
The Kalman-Bucy algorithm assimilates 

measurement data together with a priori 

information, derived from statistics of 

general population, which protects the 

results from measurement outliers. It 

restores the CT field in the entire area and 

provides an objective estimate of 

measurement uncertainty, based on the 

measurement noise level and the number 

of available data. The uncertainty map 

displays the areas where the map is less 

reliable and to what extent.  
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 Corneal topography (CT) surface can be restored 

from measurements data by decomposing 

available data into a set of orthogonal functions 

(for example, Zernike polynomials) and mapping 

the CT surface in the desired area. The accuracy 

of such restoration depends on the number and 

spacial distribution of available data and on 

measurement noises. Here we present an 

algorithm for CT data assimilation, which 

produces a statistically optimal estimate of 

measured Zernike amplitudes and their variances. 

This method yields both CT map and the CT 

uncertainty map, which is an objective estimation 

of the restoration accuracy.  

  

The Kalman-Bucy technique [1] is used to combine 

measured CT elevations with a priori mean and 

covariance of Zernike coefficients. The estimate is 

computed as follows. 

 We assume that the system is governed by a 

linear system: 

                              (1) 

where h is the vector of observations (elevations), G 

is the coefficients matrix of a linear observation 

model, and e  is the vector of measurement errors.  

We can use Zernike decomposition of elevation 

surface  as a linear model: 

 

                                   (2) 

 

Here Z are Zernike polynomials and A are Zernike 

amplitudes. 

Thus if the elevations field is defined on a set of M 

points,                , the model will be defined by the  

MxM matrix, 

          (3) 

The Kalman-Bucy algorithm, applied to corneal 

topography measurements, assimilates each 

measurement by combining the measured data 

(cornea elevations field) with a priori mean vector, A, 

and covariance matrix                                     for 

Zernike amplitudes, as defined by the following 

formulas: 

     

 

              (4) 

      

Here I is the identity matrix having dimensions, 

        is the Kalman-Bucy gain and 

 

The  matrix N is the covariance matrix of 

measurement errors.  

Formulas (4) provide a statistical optimal estimation 

of the parameter vector, A, and its covariance matrix, 

C, after the measurement is assimilated together 

with prior information.  

Once we have the covariance matrix for Zernike 

amplitudes, we can calculate variance of the corneal 

elevation field as follows: 

 

 

 

 

 

The variance is a measure of CT elevation 

uncertainty.  
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Figure 4. CT surface restoration for CT heights measured with Atlas topographer and restored 

within 6mm diameter circle.  Top row - estimated CT heights and their uncertainty in the measured 

area. Bottom row – restored heights and uncertainty maps in the entire area. 
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 The efficiency of the proposed method is demonstrated using archived corneal topography data 

from previous clinical studies.  

 For a given CT measurement the Kalman-Bucy technique assimilates all measured heights on 

a random set of points, which may contain gaps and low quality values (Fig. 3A). Combining the 

measurement with a priori information (Fig. 1, 2), the method yields an estimate of Zernike 

amplitudes and their covariance matrix. The Zernike amplitudes give us the optimal estimate of the 

measured CT heights while the covariance matrix provides the estimated CT uncertainty (std) in the 

measured area (Fig. 4 – top row).  

 These estimations also allow us to reconstruct the entire CT surface and its uncertainty with no 

gaps in the restoration area (Fig. 4 – bottom row). The estimated uncertainty map gives us a 

measure of the restoration reliability. The uncertainty is higher at the area edges, because the 

restoration is based mainly on the data from internal area. Restored field within the measurement 

gaps, where no or little measurement data are available (compare to Fig. 3)  has the highest 

uncertainty, close to the a priori variance of the general population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Kalman-Bucy algorithm is 

computationally intensive and needs an 

efficient numerical implementation. Yet it 

provides an ultimate data assimilation 

technique. All available information: both 

high and low quality measurement points 

combined together with a priori knowledge 

of the measured field (general population 

statistics) are taken into account and 

weighted by their quality (variance) 

accordingly. The result of this assimilation is 

the statistically optimal estimate of the 

measured field.  

 Simultaneously, this method yields an 

objective estimation of the measurement 

quality. The uncertainty (std) map provides a 

quantitative reliability measure for the entire 

measured. It allows quality comparison for 

different areas of the restored map: higher 

uncertainty shows up where the measured 

data are missing or have lower quality. 

 A statistically optimal estimate of measured 

Zernike amplitudes can be derived from a 

combination of the measurement data with a priori 

information, known before the measurement.  

 The latter can be obtained from statistics of 

general population. We performed retrospective 

analysis of prior clinical data, using available CT 

data for 312 virgin eyes from to calculate a priori 

mean and covariance of Zernike coefficients 

(Figure 1, 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Average and covariance of CT elevation 

Zernike amplitudes for general population 

Discussion 

5 10 15 20
-3

-2

-1

0

1

2

Terms

m
e
a
n
Z

, 
u
m

5 10 15

5

10

15

Terms

T
e
rm

s

Z covariance

 

 

-2

0

2

4

6

eAGh  ˆ





N

i

ii yxZAyxh
0

),(),(

),( kk yx

),(, kkiki yxZG 

)()()( j

k

j

i

j

ik AAC 

 
  )()()(

)(

,

)()()(

ˆˆˆˆˆ

ˆ

priorpriorprior

prior

iki

prior

k

priorprior

ii

CGKIC

AGhKAA





FGCK T ˆˆˆ 

  1
ˆˆˆˆˆ



 NGCGF T

 

),(),(

),(),(),(

,

, yxZyxZC

yxZAyxZAyxhVar

ki

ki

ki

k

kk

i

ii


























-2 0 2

-2

0

2

X, mm

Y
, 

m
m

Estimated CT height, um

 

 

-200

-100

0

100

200

-2 0 2

-2

0

2

X, mm

Y
, 

m
m

Height uncertainty in the measured area, um

 

 

0.2

0.4

0.6

0.8

-2 0 2

-2

0

2

X, mm

Y
, 

m
m

Restored CT height map, um

 

 

-200

0

200

-2 0 2

-2

0

2

X, mm

Y
, 

m
m

Height uncertainty in the restored area, um

 

 

1

2

3

4

5

6

Figure 3. CT height measured with 

Atlas topographer 
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