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N O N L I N E A R  W A V E S  I N  N O N E Q U I L I B R I U M  M E D I A  

M. I .  R a b i n o v i c h  a n d  A .  L .  F a b r i k a n t  UDC 538.57:530.18 

I N T R O D U C T I O N  

By now the mos t  developed - if not to say "chiefly fo rmula ted"  in the sense  of access ib i l i ty  of analytic 
r e su l t s ,  the development  of intuition, and ease  of unders tanding the quali tat ive aspec ts  of the p r o c e s s e s  - 
theory is that of nonlinear  waves  in t r a n s p a r e n t  equi l ibr ium media  where  both diss ipat ion and instabi l i ty  a r e  
absent .  The m o s t  impor tan t  f ields of appl icat ion of this theory a re  nonlinear opt ics ,  nonlinear acous t ics ,  many 
p rob lems  in hydrodynamics  and p l a sma  phys ics ,  e tc .  [1-3, 43]. The subject  of the p r e sen t  l e c tu re s  will  be the 
theory  of nonlinear waves in nonequil ibr ium media for  which the at tenuation and growth of the waves  is p r e -  
c i se ly  the mos t  fundamental  aspec t .  The causes  of nouequil ibr ium may be mos t  va r i ed  - speci f ica l ly ,  uncom-  
pensated  d i rec t ional  movemen t s ,  ex te rna l  f ie lds ,  gradients  (of densi ty,  of t e m p e r a t u r e  . . . .  ), e tc .  Examples  
of nonequi l ibr ium media  a r e  well  known - an e lec t ron  b e a m  coupled with a low-wave sys t em,  a p la sma  with a 
mul t ip le -hump veloc i ty  dis t r ibut ion function, media  with negative conductivity or  v i scos i ty  - speci f ica l ly ,  
tunnel and Gunn semiconduc to r s ,  a boundary l aye r  and other kinds of flow in hydrodynamics ,  e tc .  

The abundance of va r i ed  instabi l i t ies  and the absence  of conserva t ion  laws substant ia l ly  compl ica te  the 
p rob lem of formula t ing  a theory of nonlinear waves  in nonequi l ibr ium media .  The difficult ies a lso  inc rease  
because  in descr ib ing  such media ,  which a r e  as a rule  essen t ia l ly  nouconservat ive ,  it is usual ly  not poss ib le  
to go over  success fu l ly  to a uni form descr ip t ion  of them on the bas i s ,  for  example ,  of the Hamil ton or L a -  
grange f o r m a l i s m .  Never the less ,  at  l ea s t  fo r  one-d imens iona l  p rob lems  (models), one may  hope for  the con-  
s t ruc t ion  of a fa i r ly  developed theory if one takes account  of the fact  that the c h a r a c t e r  of the nonlinear wave 
p r o c e s s e s  that occur  in nonequi l ibr ium media  is de te rmined  solely by a finite number  of combinations of such 
p a r a m e t e r s  as the d i spers ion ,  nonlineari ty,  and the f requency c h a r a c t e r i s t i c s  of the instabi l i t ies  and of the 
absorp t ion  ( i .e . ,  nonconserva t iveness ) .  It  is speci f ica l ly  this fac t  which allows a unified approach to the 
descr ip t ion  of nonlinear waves in var ious  nonequi l ibr ium media  and an a t t e m p t t o  r e c r e a t e  a more  or l ess  
genera l  p ic ture  of wave phenomena in such media on the bas i s  of cons ider ing  a compara t ive ly  sma l l  number  
of fundamental  (frequency model) p r o b l e m s .  

The pr inc ipa l  focus of our l ec tu res  will be  devoted to an analys is  of wave fields for  which the iner t ia l  
in te rva l  in k - s p a c e  (for a spec t r a l  descr ipt ion)  is a region where  there  is nei ther  instabil i ty nor d iss ipat ion 
and is e i ther  sma l l  or  absent  a l toge ther .  Under these conditions,  we shall  dist inguish between the following 
si tuat ions (see Fig.  1) - a) the instabi l i ty  is concent ra ted  in the lower  por t ion of the spec t rum;  b) it  is con-  
cen t ra ted  in the upper  por t ion of the spec t rum;  c) the in te rmedia te  case .  Stabilization of the instabi l i ty may 
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Fig .  1. Poss ib le  a r r a n g e m e n t  of instabi l i ty and d i s s i -  
patton regions  along the s p e c t r u m  of wave numbers :  
a) the instabi l i ty  is concent ra ted  in the lower  por t ion of 
the s p e c t r u m ,  while the d i s s ipa t ion reg ion  is in the upper  
por t ion .  The flow of ene rgy  is upward along the s p e c -  
t r um;  b) instabi l i ty  is concent ra ted  in the upper  l~art of 
the spec t rum;  c) the in te rmedia te  ca se .  

be  accompl i shed  both by t r a n s f e r r i n g  energy  to a di f ferent  reg ion  of the s p e c t r u m  where  d iss ipa t ion  p r ed o mi -  
nates and by t r ansmi t t i ng  it to the s ame  region of the s p e c t r u m  where  l inear  instabi l i ty  is mani fes ted  on the 
bas i s  of nonlinear  l o s s e s  (viscosity) - Fig.  l c .  Le t  us r e c a l l  that the source  of energy  for  ins tabi l i t ies  may 
cons i s t  of external  f ields or  the main  (pr imary)  flow; for  envelope waves ,  such a source  may  be the c a r r i e r  
f ield (~ exp (iwt)). 

I .  T R A V E L I N G  O N E - D I M E N S I O N A L  W A V E S  

Jus t  as  for  equi l ibr ium media ,  uonlinear  t r ave l ing  waves  in nonequi t ibr ium media  can be desc r ibed  
success fu l ly  in many  c a s e s  of p rac t i ca l  in te res t  within the f r a m e w o r k  of the so -ca l l ed  one-wave approx imat ion  
[6] where  in view of the sma l lnes s  of the nonlineari ty  one may  approx ima te ly  r e s t r i c t  the cons idera t ion  to 
wave per tu rba t ions  of jus t  one f o r m  - those belonging to one b ranch  of the d i spe r s ion  equation (ion-sound 
waves  which t r ave l  in one d i rec t ion  in a p l a sma ,  t rave l ing  cap i l l a ry  waves ,  ro i l ing  waves  in a channel,  etc .) .  
A f o r m a l  desc r ip t ion  of t r ave l ing  waves  can be reduced under  these conditions to an ana lys i s  of the solutions 
of s eve ra l  bas ic  equat ions,  some  of which a r e  a genera l iza t ion  of the Bffrgers  and K o r t e w e g - d e  Vr ies  equa-  
tions for  nonequi l ibr ium media .  

1 .  W a v e s  i n  M e d i a  H a v i n g  L o w - F r e q u e n c y  I n s t a b i l i t y  

Nonlinear  waves  which develop due to low-f requeocy  instabi l i ty a re  m o s t  difficult for  nonequi l ibr ium 
media .  T h e i r  e s t ab l i shmen t  is a s soc ia t ed  with the t r a n s m i s s i o n  (due to nonlineari ty) of energy  f r o m  the in-  
s tab i l i ty  region upward  along the s p e c t r u m  of wave numbers  and the subsequent  diss ipat ion of the h igher  
h a r m o n i c s .  Since in the instabi l i ty region per turba t ions  of var ious  sca les  may  usually grow, it follows that 
in the p r e sence  of a not iceable d i spe r s ion  in the medium the phases  of the individual s p e c t r a l  components  a r e  
thrown out of k i l t e r  and the p r o c e s s  is s tochas t ic ized  - turbulence develops .  However ,  if  one of the unstable  
ha rmonics  is i so la ted  re la t ive  to the o thers  (for example ,  by boundary conditions or  a r e sonan t  ex te rna l  field), 
then a dynamic r e g i m e  of t r ave l ing  nonl inear  waves  is es tab l i shed  in the medium.  Le t  us add the fact  that  i f  
even such an i so la ted  specif ic  sca le  is absent ,  no randomizat ion  of the phases  of the individual ha rmonics  takes  
place  in a med ium having weak d i spe r s ion  - groups of ha rmonics  a re  fo rmed  which a r e  slowly c o r r e l a t e d  with 
one another ,  these  groups in te rac t ing  weakly with each other  [7-9]. This  al lows turbulence in the med ium 
having weak d i spe r s ion  and a low-f requency  instabi l i ty  to be a lso  t r ea t ed  as an ensemble  of weakly in te rac t ing  
nonl inear  waves ,  each  of which is the solution of the dynamic equations of motion of the medium - B ~ r g e r s  
turbulence [10]. 

a) Media without Dispe r s ion .  The Development  of Discontinui t ies .  Le t  us begin with the example  of 
cap i l l a ry  instabi l i ty  of a liquid jet .  It  is well  known [11] that for  a cyl indr ica l  je t  the m a x i m u m  growth ra tes  
c o r r e s p o n d  to s y m m e t r i c a l  pe r tu rba t ions ,  and it is p r ec i s e ly  their  development  during the nonlinear s t age  that 
we will be concerned  with. F o r  Reynolds numbers  that a r e  s m a l l e r  than a ce r t a in  c r i t i ca l  value (Re = ~'~/Vo; 
c~ is the coeff icient  of sur face  tension; p is the densi ty;  v 0 is the v iscos i ty) ,  the phase  veloci ty  of these p e r -  
turbat ions along the je t  is equal to ze ro  and does not depend on the wave number  - the re  is no d i spers ion .  The 
growth ra t e  of the s y m m e t r i c a l  pe r tu rba t ion  is posi t ive  only for  sma l l  wave numbers  (see Fig.  2}. With a de -  
c r e a s e  in Re,  the instabi l i ty  boundary k 0 does not change, while the value k ~ a t  which the growth ra te  is a 
m a x i m u m ,  tends to ze ro .  Consequently,  for  Re << 1 the development  of pe r tu rba t ions  in such a s y s t e m  may  be 
t r ea t ed  in the " low-f requency ins tabi l i ty"  approximat ion  - the growth ra t e  T(k) decays  monotonical ly with in-  
c r e a s i n g  k and changes sign for  k = k0; fo r  example ,  

"r (~)  = T - -  '~ ~s, r  

where  ~,, v a r e  de te rmined  by the p a r a m e t e r s  of the jet .  
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Fig. 2 Fig. 3 Fig. 4 Fig. 5 

Fig.  2. The growth rate of ax i symmetr ic  capi l lary oscillations in a cyl indr ical  viscous jet 
(Re << 1). 

Fig.  3. Shape of all s tat ionary waves in a medium having low-frequency instability (X >> 

~c). 
Fig.  4. Dependence of the amplitude of s tat ionary waves on wavelength in a medium having 
a low-frequency instability. 

Fig.  5. The resul t  of a numerica l  calculat ion of the nonlinear evolution of longwaves in a 
medium having low-frequency instability (v = 0.1, v = 1.0); a) u(x, 0) is the init ialcondition; 
b) u(x, t 0) is a s teady-s ta te  wave. 

Having made use of (I.1), we may write the equations for  the one-wave approximation for  the s t r eam 
function u [12] as:  

ut  k uz~  = 7 u -Jr- "~ u~x (I.2) 

(the velocity components of ax i symmet r ic  motion of an incompress ible  fluid can be expressed  in a cyl indrical  
coordinate sys tem in t e rms  of u: v0 = 0, Vr = -Ux, Vx = Ur; 0 is the azimuthal  angle; r is the radial  coo r -  
diuate; x is the coordinate along the jet). 

Equation (I.2), which differs f rom the Bffrgers equation by the t e rm Tu which is responsible for  low- 
frequency instability, is one of the fundamental (standard) ones in the theory of nonlinear waves in non- 
equil ibrium media.  Let  us recal l  that it applies to media without dispers ion (more prec ise ly ,  without react ive 
dispersion).  

Per iodic  waves excited in a medium descr ibed by (I.2) attenuate for  ~, < •0 = 21rC'k'7~and grow to a finite 
amplitude for  X > X 0. The amplitude of s ta t ionary  (ut = 0) waves is difficult to es t imate .  In the case when their  
length is only negligibly in excess  of the c r i t ica l  length, u may be found by the method of success ive  approxi-  
mations and represented  in the fo rm u = ~ UnSin (kux + Ca); then after  substitution into (I.2), we find the 

I t  

amplitude of the fundamental harmonic  u 1 = AJ-X-'z'-X-X 0 for  ( X -  Xo) << Xo, where A = [(12/Ir) v~73] 1/2 - i . e . ,  s tabi-  
lization of the instability takes place at the level 

u-- ~VY-:-/-~0. (1.3) 

The behavior of longwave perturbation k >> ~0 is of greatest interest. As they increase, their profile 
will be dis tor ted s imi la r ly  to the profile of a simple wave in an equilibrium medium right  up to the format ion 
of steep fronts ("breaks") for  which the high-frequency v iscos i ty  is a l ready substantial* (such a distort ion 
cor responds  to the generat ion of harmonics  - i . e . ,  to the t ransmiss ion  of energy upward along the spectrum).  
As a resul t  of the dissipation of energy on the front  (i .e. ,  in the high-frequency portion of the spectrum),  s t a -  
bilization of the instability takes place - the establ ishment  of a s tat ionary nonlinear wave. In spec t ra l  lan- 
guage this p rocess  cor responds  to establishing a constant energy flux aloug the spect rum.  Since the low- 
frequency instability has pract ical ly  no influence on the charac te r  of the nonlinear evolution of the perturbation,  
one may calculate that in the case given, just  as in an equil ibrium medium, its shape will tend to a sawtooth 
shape (Fig. 3) having an ampli tudet  

~o ~ 7k/2 ; (I.4) 

if u t = 0, then Ux = T (i.e.,  u = Tx for -X/2  - x -< X/2). Let  us emphasize the fact that the amplitude of the 
s teady-s ta te  wave does not depeud on the magnitude of the attenuation v which determines  only the width of the 

*If there were to be no viscosi ty ,  then such a "quasisimple" wave would break as it would in a conventional 
(equilibrium) medium. 
t Comparing this with (I.3), we obtain the qualitative dependence of the equilibrium amplitude on wavelength 
displayed in Fig.  4. 
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Fig. 6. Evolution of a viscous capi l lary jet 
for Re << 1 [12]. 

wave front (i. e., the thickness of the "break").  This thickness A may be est imated f rom the condition of the 
balance of the p rocesses  of nonlinear pumpover of energy upward along the spec t rum and high-frequency 
attenuation - u u  x ~ VUxx; hence we find 

• -~ 2 ~I~. (1.5) 

when (I.4) is taken into account.  Figure  5 gives resul ts  of a numerical  solution of Eq. (I.2) for u(x, 0) = 
sin (~x/25) + 0.053sin ( rx/50) ,v  = 0.1, T = 1. It is evident that in the p rocess  of evolution of an a lmost  h a r -  
monic perturbation,  a sawtooth wave develops which turned out to be unstable relative to longwave pe r tu rba -  
tions that lead to the establ ishment  of a wave having the maximum possible period.* In the actual situation, 
this period may be determined ei ther  by the initial or  the boundary condition. 

Returning to the problem of ax i symmet r ic  oscillations of viscous jets ,  we note that the sawtooth wave 
shape of the s t r eam function cor responds  to a solitonlike wave having a t r ansve r se  velocity v r = 0u/Sx. 
There fore ,  as a resu l t  of the development of the instability, the jet takes the form of a thin f i lament  with bead 
drops deposited on it. It is precise ly  such a picture which is observed experimental ly (see Fig.  6), but only 
during the intermediate stage of evolution. The point is that the filament, in turn, is unstable relative to the 
development of new small  satelli te drops between beads.  This secondary instability [ i thas  likewise been 
descr ibed  by (I.2)] has a growth rate  that is much smal le r  than the original instability. In view of the bounding 
of a fi lament sect ion by the large drops,  the scale of the growing secondary perturbat ions will be smal le r  than 
that of the p r ima r y  perturbat ion;  i .e. ,  the satel l i te will be considerably smal le r  than the drops which are  
formed immediately (see Fig.  6). T h i r d - o r d e r  instability leading to the development of still  smal le r  satell i tes,  
etc. ,  may be t reated analogously right up to disruption of the conditions governing applicability of Eq. (I.2). 

b) The Structure of a Discontinuity. The Effect of Dispersion.  It is easy to confi rm the fact  that in the 
absence of d ispers ion [the B~irgers equation is applicable for a nonequilibrium medium (1.2)] the wave front 
will be smooth. Actually, by consider ing the s ta t ionary solutions u = u(~ = x - Vt), V = const  of Eq. ([.2), we 
find the following equation for V = 0 as a resul t  of integration: 

u ~ - u ~ _ ~  u.~--~In i . , ( i .6)  

where u 0 is a pa rame te r  charac te r iz ing  the amplitude. F rom ([.6) it follows that the bounded stat ionary solu- 
tions are  necessar i ly  periodic,  their shape approaching the sawtooth shape with a growth of u 0 [the phase dia-  
g ram plotted on the basis  of (I.6) is displayed in Fig.  7]. Waves having a large amplitude have a segment of 

*This resul t  can easi ly be understood if one r e m e m b e r s  that g rea te r  periods cor respond to a g rea te r  incre -  
me n t. 
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stationary solutions of Eq. 
(1.2). All of the closed curves 
are situated below the straight 
l i n e  u~ = Y. 

slow var ia t ion - on the phase plane this segment cor responds  to motion near the straight  line u} = 7; they 
also have a segment with rapid var ia t ion - motion along a loop that departs  far  downward.* 

In order  to answer  the question as to how dispers ion affects the s t ruc ture  of a discontinuity, one should 
modify Eq. (I.2) by introducing a te rm responsible  for  d ispers ion into it. Let  us do this using the example of 
ion-sound waves in a nonequilibrium plasma.  

As is well known [13], in a nonisothermal  plasma (T e >> Ti) it follows that as a resul t  of the relat ive 
motion of electrons and ions for 

Vre V M = % < V << vre (1.7) 

(Vs is the velocity of ion sound; V is the velocity of mutual drift; VTe is the thermal velocity of the electrons) 
it is possible for instability relative to longwave ion-sound perturbations to occur. The character of this in- 
stability is qualitatively different for small and large numbers of collisions. Here let us consider the limiting 
case of a high collision frequency when the use of the hydrodynamics approximation is possible.~ The original 
equations are those of the two-fluid model [14]: 

0n~ + 0 
0-7 Tx (n ,u , )  = o, 

3 n ~ .  0 ,  , 

a t  Ox d x  Ox ~ " (I. 8) 

a~ , 1 ~x(n~T~)_O, 
OX n e 

OT~ + ne ~ x  + 2 T Ou. __ 2 x 0~" T, 
o -ff " -Ox - 3 O x ,  ' 

l z O~?'=n e - n l ,  

where X D is the Debye radius;  l is the charac te r i s t i c  perturbat ion length; ne, i  a re  the e lectron and ion con-  
centrat ions;  (p is the field potential; T e is the e lec t ron tempera ture ;  v i is the v iscos i ty ;  ~ is the e lectron 
thermal  eonductivity.:~ Here it follows that in the N a v i e r -  Stokes equation for the ions the ion p ressure  is 
neglected (i n view of the smal lness  of Ti), while in the equations for the e lect rons  the e lectron inertia is 
neglected [i.e., the small  t e rm (m/M)(due/dt) is neglected]. The continuity, thermal  conductivity, and 
Poisson equations a re  writ ten in conventional form.  

In the model considered there a re  two dissipation mechanisms - ion viscos i ty  and electron thermal  
conductivity which is assumed fair ly large here .  If V >Vs, then the electron thermal  conductivity does not 

*Hounded solutions in the class  of s tat ionary waves exist in (I.2) only for V = 0, it being true that, indepen- 
dently of the period, all perturbations propagate with an identical velocity - the phase velocity of smal l  pe r -  
turbations. It is natural that such a situation is possible only in a medium having no dispersion. 
1"The case of a collisionless plasma is considered below - see Para-. 2b. 
$ In the model considered, electron-ion collisions are not taken into account. 

512 



A(0)-A. =,,J 
A o o - -  

t L /  ' ,-- 
Fig. 8 Fig.  9 

Fig.  8. The effect of weak dispers ion on the shape of the 
s ta t ionary wave in a medium having a low-frequency in- 
stabili ty [14] (/3 > v 2 / 2 y D .  

Fig. 9. Dynamics  of solitons in a medium having low- 
frequency instabili ty.  The amplitude of the solitons tends 
to the constant A~o for  t --- ~ .  

lead to wave damping but to low-frequency instability whose development and subsequent stabil ization due to 
the ion v iscos i ty  may be descr ibed in the one-wave approximation by the equation [14] 

0tt 0tt O stt 7 u -t- v (I.9) 
+ "Ux + ~ Ox ~ Ox" 

where T = ( V / v s  - 1)/2~t; fl = k~/12;  v = v i i 2 .  Unlike (I.2), in this equation, which may be considered to be 
general ized K o r t e w e g - d e  V r i e s - B ~ r g e r s  equations for  nonequilibrium media, the high-frequency dispers ion 
is taken into account:  /~ ~ 0. 

In an equil ibrium medium (Y = 0) for  a fair ly s trong dispersion/3 > v2/2Au (Au is the amplitude of the 
discontinuity), attenuating oscil lat ions appear  on the wave front.  Since in the case considered the nonequilib- 
r ium determines  only the amplitude of the s teady-s ta te  wave, it is natural  to expect that the same resul t  will 
also be obtained for  "y > 0. Figure  8 displays the resu l t  of a numerical  calculation for (I.9) for ~ > v2/27v ,  
which conf i rms  our intuition. 

c) Solitons in Media Having Low-Frequency  Instability. If the dispers ion is so great  that the oscillations 
cut up the ent ire  wave profile,  then it is natural to speak of the behavior of the oscillations proper  ra ther  than 
of the front  and its s t ruc ture  (i .e. ,  to speak of the solitons). It turns out this way for 

~tt" '  ~ u u "  >> 7u ~ ~u". ('I.lO) 

Keeping in mind the fact  that for smal l  Y and v the pa ramete r s  of solitons v a r y  slowly, it is convenient to make 
use of the method of averaging over  s ta t ionary waves in analyzing a nonstat ionary process  [6, 15]. The solu-  
tion is represen ted  in the fo rm of a soliton having an amplitude, width, and velocity that var ies  slowly: 

t 

where V(t) = ~A(t), while 7Q(t) = 12/3/A(t) (i. e., the pa ramete r s  of the soliton are  re la ted to one another in the 
same way as they are  in a t ransparent  medium descr ibed by the conventional KDV equation). After  substi tu-  
tion of (I.11) into the original  equation {I.9) written in the form of the conservat ion law: 

dt  _~  2 _ ~  

where M[u] = -Tu  - vu is the dissipative opera tor ,  the equation for  the amplitude is obtained [14]: 

dA 4 . 4 ~__AZ" (I.13) 
g / - = ' ~  ' A-4--g 

F r o m  its solution 

(A 0 is the initial amplitude; Aoo = 5T/v; 
1A are  acce lera ted  to the velocity V~o = -~ oo and amplified to Aoo, while solitona having A 0 >A~o are  decelera ted 

A (t) -- A 0 A= e =f (I.14) 
Ao (e ~t --1) + A~ 

r = 4T/3) it follows that solitona having an initial amplitude A 0 < A~ 
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and attenuate to Ar (see Fig.  9). As a resul t ,  for t --* oo an operating mode is established in the fo rm of so i l -  
tons having identical amplitudes and veloci t ies .  Physical ly,  this resul t  seems to be fair ly obvious - solitons 
of low amplitude have a large width, and low-frequency instability leads to their  amplification; narrow soi l -  
tons (having a large amplitude) attenuate due to high-frequency.  

2 .  W a v e s  in  M e d i a  H a v i n g  N e g a t i v e  V i s c o s i t y  

It is c lear  that the actual medium cannot be of a nouequilibrium nature with respect  to perturbations 
having a rb i t r a ry  space - time sca les .  Moreover ,  in the major i ty  of cases  the nonequilibrium condition is 
manifested only for a comparat ively  narrow "s t r ip"  of perturbations (i.e.,  c lear ly  delineated scales  exist).  
For  example, for  hydrodynamic instability of flows [16, 17] the charac te r i s t i c  dimension of the s t r eam i s  such 
a scale,  while for beam instability in a plasma the rec ip roca l  plasma frequency se rves  as the time scale,  etc. 
The most  typical mechanism for stabil ization of instability iu these cases ,  as has already been said, res ides  
in the t rans fe r  of energy upward along the spec t rum where it dissipates - for example, due to viscosi ty .  

However, comparat ively  recent ly  it became c lea r  that another kind of nonequilibrium media exists for 
which growth rates  that increase  with frequency ("negative viscosi ty")  are  manifested when waves are  propa-  
gated in them. The situation is specif ical ly thus, for  example, for propagation of waves in a medium with a 
turbulence charac te r ized  by a shor t  cor re la t ion  time. Under these conditions, the wave increases  due to the 
t rans fe r  of energy f rom smal l  scale to large scale (a p rocess  that is the r eve r se  of the Richardson cascade 
t r ans fe r  of energy f rom " la rger  vor t ices  to sma l l e r  vor t i ces"  [18]). The negat ive-viscosi ty  mechanism is 
evidently real ized for cur ren ts  in the ocean and in the a tmosphere  [19]. 

a) Explosive Instabili ty of Travel ing  Waves.  Waves on a Draining Fi lm.  The effect of negative viscosi ty  
is manifested in completely famil iar  and c lear  (at f i r s t  glance) phenomena. As an example, let us take a layer  
of viscous fluid having a thickness H (see Fig.  10) which is draining along au inclined plane having an angle of 
inclination a. P lane-para l le l  s tat ionary flow has a parabolic velocity profile U(y): 

U (y) = g sin__._~a (2 Hy - -  y2), (I.15) 
2~ 

where y is the coordinate normal  to the surface of the flow; U(y) is the veloci ty component paral lel  to the in- 
clined plane; v is the kinematic viscosi ty ,  while g is the f ree- fa l l  accelerat ion.  

The investigation of the l inear stability of such a cur ren t  leads to the resul ts  displayed graphically in 
Fig.  11. Here a neutral curve - the boundary between the stability and instability domains - is drawn on the 
k, Re plane [k is the wave number of the harmonic  per turbat ions;  Re = (g sinc~H3)/2v 2 is the Reynolds number].  
This boundary consis ts  of two branches .  The upper branch is a slightly deformed neutral curve for Poiseuille 
flow (between two planes) with a parabolic velocity profile [16]. For  it there exists a cr i t ica l  Reynolds number 
R .  which is such that when it is exceeded (Re >Re . )  resul ts  in a situation in which To l lmien -Sch l i ch t ing  waves 
[16, 20] grow in the flow; this may then lead to the development of s t rong turbulence. 

The lower branch of the neutral  curve likewise has a cr i t ica l  Reynolds number 

5 
Recr = -~-ctg ~.; (I.16) 

Recr R% Re 

Fig. 10 Fig.  11 

Fig.  10. Laminar  drainage of a viscous fluid 
downward along an inclined plane. 

Fig.  11. Neutral  curves  for flow along an in- 
clined plane. The hatching is d i rected toward 
the stable domain. 
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Fig. 12 Fig. 13 

U,d 

Fig. 12. Dependence of the imaginary par t  of 
the phase veloci ty ci(k) and of the growth rate  
y(k) = kci(k) on the wave number for per tu rba-  
tions of flow along an inclined plane for Re = 
coast .  

Fig.  13. Evolution of a nonlinear wave in a 
medium having negative v iscos i ty .  The shape 
of the wave is depicted for  the success ive  t imes 
ti < t2 < t3 < t4 [24]. 

when this value is exceeded, surface gravi ta t ional -capi l la ry  waves are  excited (the flow along the ver t ica l  
plane is evidently always unstable:  R e c r  = 0).T 

For  the flows that are  usually observed under labora tory  conditions (water or  alcohol;  H ~ 0.01-1 cm), 
the condition R e .  >> Rec r  is obtained (i.e., the flow may always be considered laminar,  and the investigation may 
be r e s t r i c t ed  solely to instability of surface  waves).  For  a stipulated Re, the growth rate  T(k) of this ins ta-  
bility r i s e s  with the growth of the wave number k, and for a cer ta in  k = k ~ is a maximum (see Fig.  12). For  
perturbat ions having k << k ~ which cor responds  to T{k) ~ k 2, the equation in the one-wave approximation which 
descr ibes  this contains a t e rm which is responsible for  negative v iscos i ty  [21, 22]: 

;, § v ~x + d ~",~,x § ~~xx~ § ~x~ = o, (I.17) 

where 7/is the deviation of the surface level;  v, d, /3 are  constants which are  determined by the pa rame te r s  of 
the flow and by the surface tension, while v ~ (Re - Rcr)  is the effective v iscos i ty  which becomes  negative for 
Re >Rec r .  This same equation also descr ibes  long waves which t ravel  along an inclined channel having an 
a r b i t r a r y  c r o s s  section [22]. 

In the new var iables ,  - x  v = x - vt,  u = d~}, Eq. {I.17) has the form (for fl = 0) 

b u  u Ou . ~ a~u 0 (1.18) 
a t  + + = , 

i . e . ,  it differs f rom the Bfirgers equation solely in the sign of v and goes over  into that equation with the sub- 
sti tution t --* ~ - t, x ~ - x ,  u -" - u .  This equation permits  an exact  solution to be obtained: As a resul t  of 
the substitution u = ( 2 v / O ) ( ~ O / ~ x ) ,  it can be reduced to the l inear  thermal-conduct iv i ty  equation 

dO . d20  
= o. 

It can easi ly be demonst ra ted  [24] that the smooth solution of ft.18) at  f i r s t  evolves as a simple wave - its 
profile wraps around and then goes to infinity in a finite time (see Fig.  13): .This is  explosion instability of a 
t ravel ing wave. This resul t  may be clar if ied in spec t ra l  language as follows. An energy flux f rom the low- 
frequency modes which increases  as the high-frequency harmonics  are  amplified is added to the exponential 
growth of the high-frequency harmonic;  it is this which leads to the nouliuear growth rate of the high-frequency 
modes which ensure  the explosion. 

TThe condition for instability of surface waves is sometimes written in the form ~ > ~ where �9 = 

Umax/~gH cotol, is the Iroude number. 
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Fig. 14. Shapeof l o n g w a v e s o n a f i l m  that drains 
along a l a rge -d iame te r  ver t ica l  pipe [25]. 

It is natural  that in an actual situation the explosion stage is not reached:  either nonlinear attenuation 
is manifested,  or  else absorpt ion at higher frequency.  In our case - long waves on the surface of a draining 
liquid - it is necessa ry  to take account of the attenuation in the region of smal l  scale X < 21r/k ~ (see Fig. 12). 
Steady-state  (as a resul t  of the limitation of the explosive instability) long nonlinear waves on the surface of a 
ver t ica l ly  draining liquid film are  displayed in Fig.  14 [25]. For  shor te r  waves, it is a l ready the dispers ion 
[/g ~ 0 in ft.17)] that is essential ,  and oscillations appear on the profile of the wave (see Fig.  15). Waves whose 
length is close to the cr i t ica l  wavelength k 0 = 21r/k 0 will evidently be quasisinusoidal (Fig. 15a) [26]. 

b) Ion-Sound Waves in a Coll is ionless P l a sma .  Let us re tu rn  to the example of ion-sound waves in a 
nonequilibrium plasma which was considered above. We spoke of the case  in which the ion viscos i ty  was great  
and derived the equation for the one-wave approximation ft.9) for  nonlinear waves, where the instability is 
descr ibed by the t e rm ~ .  Under these conditions, the growth rate  ~(T - uk2). In the other limiting case - a 
coll is ionless plasma (no viscosi ty) ,  the growth rate  of ion-sound waves, which is determined by resonance 
interaction with electrons with ions, is a l ready different:  

7 -- | (V - % ) t  k I (1.20) 

- it is proport ional  to the modulus of the wave number.  Such an instability can no longer be taken into account 
within the f ramework  of par t ia l  differential  equations, and the "standard" (model) equations for the one-wave 
approximation becomes integral* [28] (n is the density): 

an an a~n ~ an d 
a-~ + ~ n -  + ~ - -  = ,~ - -  . (I.21) 

ax ' 0x ~ J~  d ~ x - -  

In an equilibrium plasma we have V = 0 and the integral  t e rm (T < 0) descr ibes  resonance attenuation of ion 
sound on e lect rons .  In the presence  of cur rent ,  when V >v s, the attenuation is replaced by instability. For  
smal l  scales ,  Landau damping on ions becomes  substantial  [27], and therefore  the next t e rm in the expansion 

*An analogous descript ion is given for nonlinear waves which grow as a resul t  of resonant  interaction of waves 
with par t ic les  or  of waves with fluxes, and in other cases  such as wind waves on shallow waters ,  Langmuir  
waves in a plasma with a beam [29], etc. The same integral  t e r m  should also be added in Eq. (I.2) for the 
s t r eam function in a capi l lary  jet.  It takes account of a deviation ~lkl  of the rea l  growth rate f rom the approx-  
imation (I.2). 

Fig.  15. Waves of var ious lengths on a 
draining fi lm [26]. The shape of the wave 
va r ies  with wavelength - f rom a quasis inu-  
soid to a relaxation wave. 
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Fig .  16. Shape of the s t a t iona ry  ion-  
sound waves  in a c o l l i s i on l e s s  non- 
equ i l ib r ium p l a s m a :  1) v = 0.5; 2) v = 
1; 3) v = 2 .  

of the to ta l  growth r a t e  in k y i e lds  a t e r m  in (I.21) wMeh is analogous to the v i s c os i t y :  

On On d3n ; O n  d ~ O'n_ff~i 
O-t- +~.n -~- ~ - -  = 7 �9 (I.22) 

As a r e s u l t  of s t ab i l i za t ion  of the ins tab i l i ty ,  the nonl inear  s t a t i ona ry  waves  r each  a s t eady  s t a te ,  and the 
shape of these  waves can be inves t iga ted  success fu l ly  only by numer i ca l  methods .  F igure  16 shows the de -  
pendence of the shape of these  waves on va r ious  v for  fl = 0 [14]. I t  is  obvious that  with a growth of the wave-  
length (or, what amounts  to the same thing, a reduc t ion  of the damping) i ts  leading edge become s t e e p e r .  In 
acco rdance  with the r e s u l t s  of this  ca lcu la t ion ,  the ave rage  energy  of the nonl inear  wave i n c r e a s e s  with a 
growth of wavelength cons ide r ab ly  more  slowly than i t  does in the case  of low-f requency  ins tab i l i ty  [compare 
with (I.3)]: 

4/-:- 
( n ~ ) ~ ]~ ~. (I.23) 

Now it  is c l e a r  that in the case  when the growth r a t e  T Ikl is added to the low-f requency  growth r a t e :  
~/(k) = ~/i + ~/21kl - uk 2 [as in the m o r e  r igo rous  ana lys i s  of nonl inear  waves  on a c y l i n d r i c a l  je t  - s ee  footnote 
to (i.21)], the prof i le  of the s t a t i ona ry  waves  nea r  the front  mus t  become  s t e e p e r .  Speci f ica l ly ,  for  a c a p i l -  
l a r y  j e t  this r e s u l t  means  the appea rance  of cons t r i c t ions  on both s ides  of each  drop  being fo rmed  [12]. Such 
cons t r i c t i ons  ac tua l ly  a r e  obse rved  (see F ig .  6). 

I I .  I N T E R A C T I O N  O F  S T A B L E  A N D  U N S T A B L E  W A V E S  

In equ i l i b r ium media  waves may exchange energy  only with one another ,  and for  the i r  dynamic i n t e r -  
ac t ion  a pe r iod ic  p r o c e s s  a r i s e s .  In the s i m p l e s t  case  of three  waves ,  the h igh- f requency  wave gives up i ts  
ene rgy  to the low-f requency  wave dur ing decay,  and then r e c e i v e s  this energy  back  dur ing  merg ing  of the 
waves .  However ,  if the phases  of the waves a r e  random,  then a uni form d i s t r ibu t ion  of energy among the 
modes  is  e s t ab l i shed .  In nouequi l ibr ium media ,  the waves may  a lso  take ene rgy  f rom the medium,  and the 
wave in t e rac t ions  turn out to be cons ide r ab ly  more  v a r i e d  and abundant.  Fo r  example ,  under  these  condit ions 
i t  is  a l r e a d y  poss ib le  for  a low-f requency  wave to decay; as  a r e s u l t  of in te rac t ions  i t  is poss ib l e  for  s i m u l -  
taneous growth of a l l  of the waves to occur  - explosion ins tab i l i ty ,  the phases  of the waves a r e  not n e c e s s a r i l y  
r andomized  for  a l a rge  number  of i n t e r ac t ions ,  and they may even be synchronized  due to the growth of indi-  
v idual  modes ,  e tc .  

In this  and the subsequent  sec t ions  we examine mainly  th ree -wave  in t e rac t ions  in med ia  having a qua-  
d r a t i c  non l inea r i ty .  We sha l l  d i s cus s  the in te rac t ion  of T o l l m i e n -  Schlicht ing waves in a boundary  l aye r ,  waves 
in an e l ec t ron  b e a m -  p l a sma  s y s t e m ,  in s emiconduc to r s  with a nonl inear  dependence of the c u r r e n t  dens i ty  on 
the f ie ld ,  and in c e r t a i n  o ther  med ia .  

1 .  A v e r a g e d  E q u a t i o n s  

F i r s t  of a l l ,  l e t  us cons ide r  the f o r m a l  a s pe c t s  of t h r ee -wave  in t e r ac t ions .  In media  having a low qua- 
d r a t i c  nonl inear i ty ,  the in te rac t ion  of r e s o n a n c e - c o u p l e d  waves wl, kl;  w2, k2; w3, ks, where  w~ = w 2 + w I + A~o, 
k3 = k2 + kl ,  may be d e s c r i b e d  by means  of the ave raged  equations for  the complex  ampl i tudes  of the waves:  

(~a[,2 _~ col,2 V (ll, 2 - -  "~1,2 a3 a2,1 ei~t"t "J[- "~1,2 lll,2, 
at (II.1) 

~aa , 
- -  r v3 V a~ : ~3 al a~ e -ih~~ -~- ~3 a3, 
Ot 

The nonuniformity of the medium may be man i fe s t ed  in these  equations in two ways.  On the one hand, the 
in t e rae t ion  coeff ic ient  ~, whieh in equ i l ib r ium media  a lways sa t i s fy  s y m m e t r y  r e l a t ionsh ips  of the type 
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b 

F i g .  17. S y n c h r o n i z a t i o n  of the  
p h a s e s  of the w a v e s  and the 
d e p a r t u r e  of t h e i r  a m p l i t u d e s  
to in f in i ty  d u r i n g  e x p l o s i o n  in  
s t a b i l i t y .  

L e t V = A o J  = v = 0 .  
(II.1) in r e a l  f o r m :  

al = a2 = -or3 (for a = ~*) , t  m a y  t u r n  out in a n o . e q u i l i b r i u m  m e d i u m  to be  a r b i t r a r y  and c o m p l e x ,  r e s u l t i n g  
in the a p p e a r a n c e  of " n o n l i n e a r "  i n s t a b i l i t i e s .  On the o t h e r  hand,  a m a y  r e m a i n  the s a m e  as  they  a r e  in the 
e q u i l i b r i u m  c a s e ,  bu t  the i nd iv idua l  w a v e s  w i l l  t u r n  out to  be  u n s t a b l e  even  in the l i n e a r  a p p r o x i m a t i o n  v i > 0. 
N a t u r a l l y ,  such  " p u r e "  s i t u a t i o n s  do not e x h a u s t  a l l  p o s s i b i l i t i e s  - c o m b i n e d  c a s e s  a r e  a l s o  e n c o u n t e r e d ;  
h o w e v e r ,  one m a y  f r e q u e n t l y  n e g l e c t  the s m a l l  l i n e a r  g r o w t h  r a t e s  in c o m p a r i s o n  with n o n l i n e a r  g rowth  r a t e s  
o r  s m a l l  i m a g i n a r y  c o r r e c t i o n s  to a .  

Us ing  the s u b s t i t u t i o n  a j  = ( A j /  [ ~JT~-~i~l)eig~ (k ~ i ~ j) ,  i ,  j ,  k = 1, 2, 3, we w r i t e  

The  i n t e r a c t i n g  wave  d e m o n s t r a t e s  a q u a l i t a t i v e l y  d i f f e r e n t  b e h a v i o r  fo r  d i f f e r e n t  v a l u e s  of 0 i .  

A, == A~ A2 cos ( r  + 0,), A. = ,43 A~ cos (,I, + 0~), 

A~ = A, A: cos (ci, ] on), (I1.2) 

~= AjA~sln(gp-~O3)--A~-Aa.sin(cP, 01) - -  AIA3 sin (#p -[- 02). 
A3 A1 A, 

P e r i o d i c  e x -  
change  of e n e r g y  (an e q u i l i b r i u m  m e d i u m )  c o r r e s p o n d s  to  the  c a s e  01 = 02 = 0 3 • It. F o r  e x p l o s i o n  i n s t a b i l i t y  
i t  is  n e c e s s a r y  and s u f f i c i e n t  tha t  the  p h a s e  d i f f e r e n c e  # change  only in such  l i m i t s  tha t  a l l  cos  (eft + 01,2, 3) a r e  
s i g n - p o s i t i v e .  T h i s  e a s e  i s  r e a l i z e d  when a l l  0i have  a r e l a t i o n s h i p  such  tha t  m a x { 0 i }  - m i n { 0 i }  < ~r ( i . e . ,  
l i e  on one h a l f - p l a n e  [30]). U n d e r  t h e s e  c o n d i t i o n s ,  the  p h a s e s  of the w a v e s  a r e  r a p i d l y  s y n c h r o n i z e d  and 
t h e i r  a m p l i t u d e s  go to in f in i ty  in  a f in i t e  t i m e  (see  F i g .  17).  

A s s u m i n g  now tha t  a a r e  the s a m e  a s  they  a r e  in an  e q u i l i b r i u m  m e d i u m ,  l e t  us  g ive  d e t a i l e d  c o n s i d e r a -  
t ion to the i n t e r a c t i o n  of w a v e s  tha t  a r e  s t a b l e  and u n s t a b l e  in the l i n e a r  a p p r o x i m a t i o n .  

2 .  A m p l i f i c a t i o n  o f  W e a k  S i g n a l s  

L e t  the f i e l d  of one of the  w a v e s  be  s t i p u l a t e d .  If the m e d i u m  w e r e  to  be  an e q u i l i b r i u m  m e d i u m ,  the 
s i t u a t i o n  in which  the a m p l i t u d e s  of the l o w - f r e q u e n c y  waves  a r e  s m a l l  would  be  of g r e a t e s t  i n t e r e s t  h e r e  (i. e . ,  
p a r a m e t r i c  a m p l i f i c a t i o n  of t h e s e  w a v e s  a s  a r e s u l t  of the h i g h - f r e q u e n c y  p u m p i n g  co 3 (decay  i n s t a b i l i t y ) .  Con-  
s i d e r a t i o n  of the n o n e q u i l i b r i u m  n a t u r e  of the m e d i u m  in the  l i n e a r  a p p r o x i m a t i o n  - the a p p e a r a n c e  of a l i n e a r  
g rowth  r a t e  f o r  one of the  w a v e s  - m a y  l e a d  to q u a l i t a t i v e l y  new e f fec t s  only in the c a s e  when the p a r a m e t r i c  
g rowth  r a t e  t u r n s  out  to be  s i g n i f i c a n t l y  b e l o w  the g rowth  r a t e  of the u n s t a b l e  w a v e .  As  we s h a l l  now v e r i f y ,  
u n d e r  t h e s e  cond i t i ons  the t r a n s f e r  of  the l a r g e  g rowth  r a t e  of the u n s t a b l e  wave  to the weak  s i g n a l  wave  t a k e s  
p l a c e ,  in  v i ew of which  such  a p r o c e s s  i s  s o m e t i m e s  c a l l e d  s u p e r h e t e r o d y n e  a m p l i f i c a t i o n  [31]. T h i s  p r o c e s s  
i s  o b s e r v e d  in  p h y s i c s  and c o m p u t e r  e x p e r i m e n t s  on the i n t e r a c t i o n s  of s t a b l e  o r  n o . i n c r e a s i n g  and u n s t a b l e  
w a v e s  in p i e z o s e m i c o n d u c t o r s  [31, 32], in n o . e q u i l i b r i u m  p l a s m a  [33], e t c .  I t  i s  e s s e n t i a l  t ha t  such  an  
" a m p l i f i e r "  w i l l  a l s o  o p e r a t e  f o r  l o w - f r e q u e n c y  p u m p i n g  [33] (which is i m p o s s i b l e  in an  e q u i l i b r i u m  m e d i u m ) .  

L e t  us  c o n s i d e r  p a r a m e t r i c  a m p l i f i c a t i o n  in  a o n e - d i m e n s i o n a l  m e d i u m  (along x) f o r  a s i g n a l  wave  a3(x) 
in  the  s t i p u l a t e d  f i e ld  of  a p u m p i n g  wave  a 2 = a20 = c o a s t  on the a s s u m p t i o n  tha t  ~ /0 t  = Aw = v2, 3 = 0; i . e . ,  i n -  
s t e a d  of (II.1) we have  

t I t  i s  not  d i f f i cu l t  to v e r i f y  the  f ac t  tha t  in an  e q u i l i b r i u m  m e d i u m  one m a y  a l w a y s  c h o o s e  the  v a r i a b l e s  in 
s u c h  a way  tha t  a w i l l  be  e i t h e r  p u r e l y  r e a l  and  th is  cond i t i on  wi l l  be  s a t i s f i e d ,  o r  p u r e l y  i m a g i n a r y  in  which  
c a s e  the s y m m e t r y  cond i t i ons  a r e  w r i t t e n  a s  a 1 = a 2 = a 3. 
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Fig. 18. Abrupt growth of the signal wave 
fa r  f rom the boundary, which is due to the 
effect of superheterodyne amplification. 

( ~ a  t 
= ~1 a3 a~ + "l' a,, 

Ox (IL3) 
d~t~ 

8x 
If the pa rame t r i c  coupling is weak (i.e.,  the ra t io  of the pa ramet r i c  growth ra te  F = Az0 avaW3 to ' / i s  5 = 
(F/-/) z << 1, then for the boundary conditions az(x = 0) = an(0), al(x = 0) = 0 we have the following approximate 
relat ionship for  (H.3): 

a:~ (x) = as (0) (1 - -  ~ eta), 
(H.4) 

a, (x) = aa (0) L' a~ (e~ ..... 1). 
T 

Based on this solution, it is easy to t race  the individual s tages of the superheterodyne amplification for propa-  
gation of the wave: 1) amplification of the f ree  wave al, which takes account of the information on the signal 
due to the boundary conditions (this p rocess  occupies the interval  0 < x ~ 1/-/; 2) s t rong growth of the free 
("heterodyne") wave al - this stage occupies the interval  1/~/~ x ~ x 0 = (1/2/) In (1/5) and is completed by the 
t rans fe r  of the large growth ra te  3, to the signal wave; 3) amplification of the wave a 3 with the growth rate "/ 
by a factor  k >> 1 over the distance x = (1/T) lnk /5  [for x < x 0 this wave is pract ical ly  unamplified and is equal 
to a3(0)]. Thus, the experimental  resu l t  consist ing of the abrupt growth of the weak wave having a smal l  
pa r ame t r i c  growth rate far  f rom the boundary of the nonequilibrium medium which appears to be paradoxical  
at  f i r s t  glance may have a tr ivial  explanation - initially the hidden p rocess  of the t rans fe r  of the large growth 
rate  of the other wave to this wave goes on, and then abrupt growth occurs  which essential ly bears  no re la t ion-  
ship to pa ramet r i c  amplification (see Fig.  18 [33]). 

In a rea l  nonequilibrium medium, the considered process  is l imited by two factors  - the growth of the 
fluctuations of the frequency of the free wave and limitations of the l inear growth of this wave due to nonlinear 
effects associa ted  with the tendency of the nonequilibrium medium to go over  to an equilibrium state.  In the 
major i ty  of eases ,  the f i r s t  factor  is the mos t  dangerous,  whereas the nonlinear l imitation of the amplitude of 
the l inear ly  unstable wave as a rule does not in terfere  with the fur ther  amplification of the weak signal wave; 
thus, the p rocess  will continue as long as these waves do not become of the same order  of magnitude. Such a 
p rocess  was specifically investigated in detail as it applies to the interaction of waves in a beam with plasma 
[33]. 

3 .  S t a b i l i z a t i o n  o f  L i n e a r  I n s t a b i l i t y  d u e  to  E n e r g y  

T r a n s f e r  b y  A t t e n u a t i n g  W a v e s  

Such a p rocess ,  which is of g rea tes t  in te res t  for  nonequilibrium media with a spect ra l ly  narrow insta-  
bility domain (for example,  pa ramet r i ca l ly  excited media;  a beam in a plasma) can be descr ibed  by the system 
(H.1) for ~t,2a3 < 0 and viv j < 0. In the approximation based on random wave phases,  one may write the equa- 

t i ons  for  the intensities as follows (we assume that ~t,2 = -a3;  V = 0) 

/i/x'2 = ~ N1 N2 N3 + N,2 N~ (II.5) 

' 1  1 ) 
i 

F r o m  (II.1) and (11.5) it follows direct ly  in the case  given that if one of the waves grows (v i < 0), then the l imi-  
tation of instability is possible only when the p rocess  is a decay process  - s tabil izat ion of one-wave instability 
at  the frequency cot, 2 < w a is impossible,  since for t --* oo the quasipar t ie les  w2, t vanish, and the process  of 
energy convers ion upward along the spec t rum ceases .  It is just  as obvious that for  growth of both low-frequency 
waves having dynamic phases,  the stabilization of the instability due to the attenuating wave co 3 is possible only 
for  equal actual growth ra tes  of these waves - in a unit t ime an identical number of quanta r 1 and w 2 must  be 
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F i g .  19. S t a b i l i z a t i o n  of the i n s t a b i l i t y :  a) f o r  
d e c a y ;  b) fo r  m e r g i n g .  

p r o d u c e d ;  o t h e r w i s e ,  those  quanta  of which  the g r e a t e r  n u m b e r  i s  p r o d u c e d  p e r  uni t  t i m e  w i l l  not  have  a n y -  
th ing  to m e r g e  wi th .  

F o r  i n t e r a c t i o n  of  w a v e s  hav ing  d y n a m i c  o r  r a n d o m  p h a s e s ,  the c h a r a c t e r  of the  c o n s t r a i n t  on the i n -  
s t a b i l i t y  t u r n s  out  to b e  d i f f e r e n t .  When  the p h a s e s  a r e  r a n d o m ,  then  i t  fo l lows  tha t  if  s t a b i l i z a t i o n  i s  p o s s i b l e  
an  o p e r a t i n g  r e g i m e  wi th  a c o n s t a n t  e n e r g y  l e v e l  in  each  of the w a v e s  is  e s t a b l i s h e d :  

1~31~2,t ) '  

f o r  the d e c a y  p r o c e s s  (see  F i g .  19a),  and  

N o = "~3 I " zx  I ) '  

fo r  the m e r g i n g  p r o c e s s  ( see  F i g .  19b, v 1,2 < 0, v~ > 0). 

Mo ( I I . O  

I ~, ~ 1  ( I I . 7 )  
N~ = ~  I h [ .... i ~ ,  I ) 

S t a b i l i z a t i o n  is  p o s s i b l e  when the r e s u l t a n t  a t t e n u a t i o n  e x c e e d s  the r e s u l t a n t  g rowth  r a t e  v t + v 2 > I v31, 
o r  when v 3 > I v i I + I v21. T h e s e  s a m e  cond i t i ons  a l s o  g u a r a n t e e ,  a s  c a n  e a s i l y  be  checked ,  the s t a b i l i t y  of the 
s t a b i l i z a t i o n  r e g i m e  f o r  i n t e r a c t i o n  of w a v e s  h a v i n g  r a n d o m  p h a s e s .  

F o r  i n t e r a c t i o n  of w a v e s  hav ing  w e l l - d e f i n e d  p h a s e s ,  the e s t a b l i s h m e n t  of an  o p e r a t i n g  r e g i m e  wi th  a 
c o n s t a n t  e n e r g y  d i s t r i b u t i o n  b e t w e e n  w a v e s  a s  a r e s u l t  of s t a b i l i z a t i o n  of the i n s t a b i l i t y  is  i m p o s s i b l e  - the 
s t a t i o n a r y  s t a t e  in  the s y s t e m  (II.1) fo r  ~1,2(r3 < 0, ~7 = 0 and vt, 2 >0 ,  v 3 < 0 o r  vi,  2 < 0, v 3 >0 e x i s t s  but  is  
a l w a y s  u n s t a b l e .  Only the t r i v i a l  c a s e  of the g e n e r a t i o n  of the s e c o n d  h a r m o n i c  is  an  e x c e p t i o n .  H o w e v e r ,  i t  
t u r n s  out  to  be  p o s s i b l e  to have  a d y n a m i c  s t a b i l i z a t i o n  r e g i m e  - the i n t e n s i t i e s  of the i n t e r a c t i n g  waves  a r e  
l i m i t e d  bu t  v a r y  wi th  t i m e .  U n d e r  t h e s e  c o n d i t i o n s ,  the e n e r g y  f lux f r o m  the i n s t a b i l i t y  d o m a i n  to the d r a i n  
d o m a i n  t u r n s  out  to be  m o d u l a t e d .  U s i n g  the e x a m p l e  of d e c a y  i n t e r a c t i o n ,  l e t  us c o n s i d e r  th is  p r o c e s s  in 
g r e a t e r  d e t a i l . *  

4 .  D e c a y  T r i p l e t .  D e v e l o p m e n t  o f  S t o c h a s t i c i t y  

L e t  us i m m e d i a t e l y  e m p h a s i z e  the f a c t  tha t  w h e r e a s  the c l a s s i c a l  p r o b l e m  of a c o n s e r v a t i v e  t r i p l e t  
(vl,2, 3 = 0) s e r v e s  a s  the e l e m e n t a r y  "b lock"  in the  t h e o r y  of w a v e s  in e q u i l i b r i u m  m e d i a ,  i t  fo l lows  tha t  an  
i n v e s t i g a t i o n  of a n o n c o n s e r v a t i v e  t r i p l e t  is  one of the p r i n c i p a l  p r o b l e m s  in the t h e o r y  of wave  i n t e r a c t i o n s  in 
n o n e q u i l i b r i u m  m e d i a .  

T h u s ,  l e t  us c o n s i d e r  the d y n a m i c s  of a wave  t r i p l e t  in which  h i g h - f r e q u e n c y  (hf) m o d e s  have  a l i n e a r  
g rowth  r a t e  % whi le  the l o w - f r e q u e n c y  (lf) m o d e s  a t t e n u a t e  [34]: 

,4J,2 = - -  ~ A3 A2,t sin ,I) - -  ',1,2 At,2, 

~]3 - -  *AI  A2 sin el) + 7A~, (I1.8) 
2 2 ~P = J (A~AaA3) -1 (A~ A~ + A2 A~ -- A~ A~) cos (1) - -  A(,~, 

w h e r e  r = q~3 - (P2 - qh is  the  p h a s e  d i f f e r e n c e  of the  w a v e .  

a) A v e r a g i n g  o v e r  E l l i p t i c  F u n c t i o n s .  F i r s t  of a l l ,  l e t  us  c o n s i d e r  the c a s e  of f a i r l y  l a r g e  i n i t i a l  
e n e r g i e s  when  the n o n l i n e a r  t e r m s  in  (II.8) s u b s t a n t i a l l y  p r e d o m i n a t e  o v e r  the  l i n e a r  t e r m s . t  Then  the s o l u -  
t ion of ou r  p r o b l e m  m a y  be  c o n s i d e r e d  c l o s e  to the s o l u t i o n  of a c o n s e r v a t i v e  t r i p l e t ,  

* I t  m a y  be  shown tha t  the s t a b i l i z a t i o n  of  two g rowing  w a v e s  hav ing  the d y n a m i c  p h a s e s  due to a t t e n u a t i n g  h i g h -  
f r e q u e n c y  w a v e s  i s  p o s s i b l e  only i f  the n u m b e r  of  i n t e r a c t i n g  w a v e s  e x c e e d s  t h r e e .  
t T h e s e  r e s u l t s  w e r e  o b t a i n e d  in c o l l a b o r a t i o n  wi th  E .  N. P e l i n o v s k i i .  
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A~ = s ~ cn (f i t ,  s), 

A2 ---- - -  ~ dn (2 t, s), (1"I.9) 

As = s (2. sn (12 t, s) 

( s n z ,  c n z ,  d n z  a r e  e l l i p t i c  J a c o b i  f unc t i ons ;  s and fi a r e  a r b i t r a r y  p a r a m e t e r s ) ,  and  by  a v e r a g i n g  o v e r  the 
e l l i p t i c  func t ions  one can  d e t e r m i n e  the evo lu t i on  of the p a r a m e t e r s  of the s o l u t i o n  - the  modu lus  s and  the 
f r e q u e n c y  ft .  I t  i s  s i m p l e s t  to do a l l  t h i s  b y  m a k i n g  use  of the  e n e r g y  r e l a t i o n s h i p s  d e r i v e d  f r o m  (II.8) : 

dt  

d 2 
( &  + Af) = 2 (-r A] - -  ',, AI). 

(II.lOa) 

(II.lOb) 

A v e r a g i n g  t h e s e  equa t i ons  o v e r  the p e r i o d  of the e l l i p t i c  func t ions ,  we ob ta in  the fo l lowing  equa t ions  f o r  s (t) 
and  f~ (t): 

ds  
s - -  = (7 ~- ~ ) F ( s ,  q); (II.11) 
dt 

d~ 
- - =  (T q- ~ , )G(p ,  s)O-, (II.12) 
d t  

E ( s )  ? ( s ,  q) --  1 - s ~ {_ qs a E ( s )  
I~ (s) K (s) ' 

E (s) "~ + ~,2 "; 
G ( s , p ) = p  K ( s ) '  q ' P " 

T - -  ~i 7 §  

H e r e  E and K a r e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  wi th  modu lus  s .  T h e s e  equa t i ons  a r e  v a l i d  i f  A l < A2; o t h e r w i s e ,  
v 1 and  v 2 a r e  s i m p l y  i n t e r c h a n g e d .  

E q u a t i o n  (H.11) has  t h r e e  e q u i l i b r i u m  s t a t e s  in the g e n e r a l  c a s e  which  c o r r e s p o n d  to v a n i s h i n g  of the  
func t ion  F(q ,  s) :  s i  = 0, s 2 = 1, and  s 3 = s0(q), w h e r e  s o is  the r o o t  of the  equa t ion  F(q ,  s 0) = 0 and e x i s t s  only  
f o r  1 /2  __< q < 1. The  v a l u e s  q >- 1 c o r r e s p o n d  to the c a s e  v 1 -< v2, whi le  the v a l u e s  q -< 1 / 2  c o r r e s p o n d  to 
vl -< T + 2v2. F o r  q < 1 /2  only the  s t a t e  s = 0, which  in the g iven  a p p r o x i m a t i o n  c o r r e s p o n d s  to a t t e n u a t i o n  
of  the a m p l i t u d e s  of a l l  the  w a v e s ,  i s  s t a b l e .  In a p r a c t i c a l  s i t ua t i on ,  such  a t t e n u a t i o n  wi l l ,  of c o u r s e ,  c o n -  
t inue  not  to z e r o  bu t  only  to the l e v e l  a t  which  the n o n l i n e a r  t e r m s  in  (II.8) b e c o m e  of the  o r d e r  of the l i n e a r  
t e r m s  and the  a v e r a g i n g  m e t h o d  is obv ious ly  i n a p p l i c a b l e .  F o r  q -> 1, the s t a t e  s = 1 c o r r e s p o n d i n g  to  the  
s o l u t i o n  of (II.9) in the f o r m  of a s ing le  p u l s e  (sol i ton)  of the e n v e l o p e s  of the I f  m o d e s  and a t r a n s f e r  p u l s e  
of  the  hf m o d e  i s  s t a b l e .  It i s  obv ious  tha t  in the r e g i o n  of s m a l l  f i e l d s  the a p p r o a c h  b a s e d  on a v e r a g i n g  i s  
a g a i n  i n a p p l i c a b l e ,  and  i t  t u r n s  out tha t  in th is  i m p o r t a n t  c a s e  i t  is  n e c e s s a r y  to i n v e s t i g a t e  the  s o l u t i o n s  in 
s o m e  d i f f e r e n t  m a n n e r  [see i t e m s  b) and  c)] .  F o r  i n t e r m e d i a t e  v a l u e s  1 /2  < q < 1, the  s t a t e  s = s0(q) t u r n s  
out  to be  s t a b l e ;  th i s  c o r r e s p o n d s  to the e s t a b l i s h m e n t  of a fu l ly  de f ined  shape  of the p e r i o d i c  v a r i a t i o n  of the 
e n v e l o p e  (this shape ,  of c o u r s e ,  d e p e n d s  on the r e l a t i o n s h i p  b e t w e e n  vt, 2 and  3/). I t  fo l lows  f r o m  (II.12) tha t  
the  a m p l i t u d e  of the  b e a t s  u n d e r  t h e s e  cond i t i o ns  m a y  not n e c e s s a r i l y  t end  to s t a t i o n a r y  s t a t e s  but  m a y  g row 
s l o w l y  [under t h e s e  cond i t i ons  i t  fo l lows  tha t  wi th in  the f r a m e w o r k  of the c o n s i d e r e d  E q s .  fII.8), t h e r e  is  no 
s t a b i l i z a t i o n ] ,  o r  i t  m a y  a t t e n u a t e  (under  t h e s e  c o n d i t i o n s ,  a s  has  a l r e a d y  b e e n  s a i d ,  ou r  " a v e r a g i n g "  a p p r o a c h  
i s  not  s u i t a b l e ) .  T h e r e  a r e ,  h o w e v e r ,  s p e c i f i c  r e l a t i o n s h i p s  b e t w e e n  vl ,  2 and  3~ fo r  which  G(p, s0(q)) in  (II.12) 
v a n i s h e s ;  then  t h e r e  e x i s t s  s t a t i o n a r y  p e r i o d i c  r e g i m e s  fo r  the  v a r i a t i o n  of the  e n v e l o p e  fo r  which  the a m p l i -  
tude of the  b e a t s  d e p e n d s  on the i n i t i a l  c o n d i t i o n s .  

T h u s ,  f r o m  the a n a l y s i s  p r e s e n t e d  i t  fo l lows  tha t  no tw i th s t and ing  the p r e s e n c e  of s m a l l  n o n e o n s e r v a t i v e  
t e r m s  in (II.8), the a v e r a g i n g  m e t h o d  which  a p p e a r s  n a t u r a l  h e r e  i s  s u i t a b l e  only  in  i nd iv idua l  exo t i c  s i t u a t i o n s  
o r  f o r  the  a n a l y s i s  of t r a n s i e n t s  o v e r  f in i t e  t i m e  i n t e r v a l s .  

b) Q u a l i t a t i v e  A n a l y s i s .  E x a c t  S y n c h r o n i s m .  L e t  us  now r e j e c t  the  a s s u m p t i o n  tha t  the  l aw g o v e r n i n g  
the v a r i a t i o n  of the a m p l i t u d e  and  p h a s e s  of the  i n t e r a c t i n g  m o d e s  is  c l o s e  to fII.9), and l e t  us  u s e  m e t h o d s  in 
the q u a l i t a t i v e  t h e o r y  of d i f f e r e n t i a l  e q u a t i o n s .  T h e  a n a l y s i s  of the s y s t e m  (II.8) is  s u b s t a n t i a l l y  s i m p l i f i e d  fo r  
u 1 = v 2 = v, s i n c e  u n d e r  t h e s e  cond i t i ons  i t  fo l lows  f r o m  (II.10a) that  

(A~ - -  A -~) = const e-~t -~ 0. m .13 )  
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F i g .  20 F i g .  21 

F i g .  20. E x c h a n g e  of  e n e r g y  b e t w e e n m o d e s  fo r  t h r e e -  
wave  i n t e r a c t i o n  in an  e q u i l i b r i u m  m e d i u m .  

F i g .  21. The  p r o p o s e d  o s c i l l o g r a m s  of the i n t e n s i t i e s  
of a t t e n u a t i n g  (lf) and  the  a m p l i f i e d  (hf) m o d e s  f o r  
r e s o n a n c e  i n t e r a c t i o n .  

and  tha t  the  i n t e n s i t y  of the  i f  m o d e s ,  b e g i n n i n g  wi th  a c e r t a i n  t i m e ,  m a y  be  c o n s i d e r e d  equa l :  A 2 = A 2 = A 2. 
T h e n  hav ing  m a d e  u s e  of the s u b s t i t u t i o n :  

X = - - - A a s i n f f ) ,  Y = - - A  3 c o s O ,  Z =  A 2, 

~ ~: (II.14) 

we s h a l l  have  the fo l lowing  r e s u l t  i n s t e a d  of (II.8): 

Jr = z + ~ , y  - -  2Y-" + -~X, 

~ = - -  CX -1- 2 X 7  + ~, v, (rr.15) 

2 = - 2 Z ( X + l ) .  
F o r  an  a n a l y s i s  of  th is  s y s t e m  we m a k e  use  of p h a s e  s p a c e .  I t  is  e v ide n t  tha t  i t s  s t r u c t u r e  in the g iven  

c a s e  is  d e t e r m i n e d  by  two p a r a m e t e r s  - the  g rowth  r a t e  T of the h f  wave  and the de tun ing  f r o m  e x a c t  s y n -  
c h r o n i s m  5. The  s t a b i l i z a t i o n  of the hf  m o d e  by  a t t e n u a t i n g  l o w - f r e q u e n c y  m o d e s ,  obv ious ly ,  i s  p o s s i b l e  
only f o r  a f a i r l y  s m a l l  T.* A s s u m i n g  f u r t h e r  tha t  ~ << 1, we s h a l l  c o n s i d e r  i t  a s  a s m a l l  p a r a m e t e r .  U n d e r  
t h e s e  c o n d i t i o n s ,  the p h a s e  s p a c e  s p l i t s  into d o m a i n s  of f a s t  and s low m o t i o n s .  The  l a t t e r  a r e  s i t u a t e d  n e a r  
the  s t r a i g h t  l ine  Y = 5 /2 ,  Z = 0, and  a r e  d e t e r m i n e d  by  the i n e q u a l i t i e s  

I Z I ~ T I X I ,  12Y2--?,YI~'glXI. (II.16) 

T h e  s y s t e m  (II.11) has  only two e q u i l i b r i u m  s t a t e s ,  and  both  of t h e m  a r e  u n s t a b l e  (of the  " s a d d l e - f o c u s "  type) .  
One i s  s i t u a t e d  a t  the o r i g i n  (for 5 = 0 i t  goes  o v e r  in to  a " s a d d l e - n o d e " ) ,  whi le  the o t h e r ,  which  has  the c o o r -  
d i n a t e s  X = - 1 ,  Y = 5 / (2  - T), Z = T[1 + 52/(2 - T)2], i s  s i t u a t e d  on the b o u n d a r y  b e t w e e n  f a s t  and s low m o t i o n s .  

In the  c o n s e r v a t i v e  c a s e ,  t h r e e - m o d e  i n t e r a c t i o n  is  a p e r i o d i c  a l t e r n a t i o n  of the m e r g i n g  and d e c a y  p r o -  
c e s s e s  ( see  F i g .  20). What  c h a n g e s  when l o s s e s  e x i s t  f o r  m e t i n g  If  m o d e s ?  I t  is  obvious  tha t  the t i m e  
b e t w e e n  the end of the m e r g i n g  p r o c e s s  and the b e g i n n i n g  of the d e c a y  p r o c e s s  (the l a t t e r  c o n s i s t s  of d i s s i p a -  
t i on  of w e a k  i f  m o d e s )  s lows  down the m a n i f e s t a t i o n  of the d e c a y  g rowth  r a t e  a t  low a m p l i t u d e s  of the If 
m o d e s .  In  the p r e s e n c e  of a s m a l l  g rowth  r a t e ,  the hf  m o d e  wi l l  i n c r e a s e  e x p o n e n t i a l l y  d u r i n g  th is  t i m e .  
T h u s ,  fo r  s m a l l  T the  o s c i l l o g r a m s  of the a m p l i t u d e s  of the  If m o d e s  wi l l  be  c o n v e r t e d  into  a s e q u e n c e  of 
w i d e l y  s p a c e d  p e a k s  ( so l i tons ) ,  whi le  the  hf  m o d e s  wi l l  be  c o n v e r t e d  into  a s a w  with  e x p e r i m e n t a l  p e a k s  ( see  
F i g .  21). 

E x a c t  S y n c h r o n i s m  (5 = 0). In the  p h a s e  s p a c e  of the  s y s t e m  (II.11) t h e r e  a r e  two i n t e g r a l  s u r f a c e s  ( the i r  
t r a j e c t o r i e s  do not  i n t e r s e c t )  Z = 0 and Y = 0 fo r  5 = 0; cones  of s low m o t i o n s  a r e  s e a t e d  on the i n t e r s e c t i o n  of 
t h e s e  p l a n e s  (see  F i g .  22). The  p h a s e  d i a g r a m s  of t h e s e  s u r f a c e s  a r e  d i s p l a y e d  in F i g .  23a,  b.  On the Z = 0 
p l ane ,  the d o m a i n  of  s l ow  m o t i o n s  is  bounded  by the p a r a b o l a  T IXI = 2Y 2, whi le  f o r  X > 0 i t  is  the i s o c l i n e  of 
h o r i z o n t a l  t a n g e n t s .  Outs ide  th is  d o m a i n ,  the  e f f ec t  of a s m a l l  g rowth  r a t e  is  i n s u b s t a n t i a l ,  and the t r a j e c -  
t o r i e s  a r e  p r a c t i c a l l y  i n d i s t i n g u i s h a b l e  f r o m  the c i r c l e s  X 2 + y2 = c o n s t  on which e n e r g y  is  c o n s e r v e d .  The  
m o t i o n s  on th is  p lane  a r e  a s y m p t o t i c a l l y  s t a b l e  r e l a t i v e  to  p e r t u r b a t i o n s  of Z in  the d o m a i n  X > - 1 .  

Mot ions  on the i n t e g r a l  p lane  Y = 0 a r e  a s y m p t o t i c a l l y  s t a b l e  r e l a t i v e  to p e r t u r b a t i o n s  of Y in the  X < 
- T / 2  d o m a i n .  On th is  p l ane ,  the d o m a i n  of s l ow  m o t i o n s  i s  bounde d  by  the s t r a i g h t  l i n e s  Z = • fo r  X < 0 

* I f  one m a k e s  u se  of the  ana logy  with  q u a s i p a r t i e t e s ,  then  T < 2 m u s t  hold ;  in a n u m e r i c a l  e x p e r i m e n t ,  the 
l i m i t a t i o n s  of the  i n s t a b i l i t y  was  o b s e r v e d  fo r  T < 1 / 6  (see  be low) .  
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Fig .  22. The phase  space  of the s y s t e m  (H.11). 
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F ig .  23. Phase  d i a g r a m s  of the in t eg ra l  

p lanes  for  6 = 0 :  a) Z = 0 ;  b) Y = 0 .  

this  is the i soc l ine  of v e r t i c a l  tangency (see F ig .  23b). On these  i n t eg ra l  su r f aces  Y = 0 and Z = 0, the t r a -  
j e c t o r i e s  behave  in a v e r y  s i m i l a r  m a n n e r  - for  t --* ,o they squeeze  a s y m p t o t i c a l l y  toward the X ax i s .  

Let  us now r e p r e s e n t  the en t i r e ty  of the c h a r a c t e r  of the motions  which c o r r e s p o n d  to t r a j e c t o r i e s  which 
a r e  not too f a r  f rom the Z = 0 and Y = 0 p lanes .  While squeezing toward  the Z = 0 plane in the domain  X > - 1 ,  
the image  point  moves  along a c i r c l e  unti l  i t  en te r s  the domain  of s low motions (see F ig .  23a) where  the a m p l i -  
tude of the hf mode grows exponent ia l ly .  Af te r  emergence  f rom the domain  of s low mot ions ,  i t  r i s e s  while 
r e m a i n i n g  c lose  to the Y = 0 plane and depa r t s  in the d i rec t ion  of i nc r e a s i ng  X (the decay  s ta te ) ,  a f t e r  which 
i t  c r o s s e s  the X = 0 plane and descends  to the Z = 0 plane (merging).  Having landed in the domain of s low 
mot ions  he re ,  the point again  moves  in the neighborhood of Z = 0 (X grows) and then goes over  onto the c i r c l e  
X 2 + y2 = c o n s t ,  e tc .*  

In o r d e r  to d e t e r m i n e  the c h a r a c t e r  of the cons ide red  mot ions ,  l e t  us c l a r i f y  how the points of the n a r -  
row v e r t i c a l  s t r i p  0 < YI < Y < Y2 << 1 a r e  mapped on the X = 0 plane by the phase  t r a j e c t o r i e s  for  X > 0 into 
points  on the hor i zon ta l  s t r i p  0 < Zl < Z < Z 2 << 1 of this s ame  plane,  and then how the t r a j e c t o r i e s  for  X < 0 
again  map them into points of the v e r t i c a l  s t r i p .  This  y ie lds  the dependence of the p a r a m e t e r s  of motion at  
the end of a p e r i o d  on the i r  va lues  and beginning of the pe r iod .  Then using an i t e r a t ion  p rocedure ,  i t  wi l l  be 
pos s ib l e  to e s t ab l i sh  such qual i ta t ive  f ea tu re s  of the p r o c e s s  as the ex i s tence  of per iod ic  opera t ing  r e g i m e s  
and the deve lopment  of s tochas t i c i t y .  

The qual i ta t ive  fo rm of the mapping  of the v e r t i c a l  s t r i p  into the hor izon ta l  s t r i p  and then back into the 
v e r t i c a l  s t r i p  is d i sp layed  in Fig .  24. Here  the s uc c e s s i ve  t r ans fo rma t ions  of a c e r t a i n  line in the v e r t i c a l  

* F o r  l a r g e  in i t i a l  e n e r g i e s ,  p r o c e s s e s  a r e  a l so  poss ib le  which a r e  such that  the point c i r cumven t s  the domains  
of slow motions  and en te r s  the domain  Z > TIXI for  X < 0 and s m a l l  Y immed ia t e ly  by de taching  i t se l f  f rom the 
c i r c l e  for  X < - 1 .  However,  for  s m a l l  va lues  of 3, these  motions must  be unstable  - the energy  l o s s e s  of the 
hf  modes  dur ing  the m e r g i n g  and decay s t ages  a r e  not compensa ted  by the ampl i f i ca t ion  of the hf mode.  

Z . . 7 

b 

~Y~ Y Y v,Y, v 

Fig .  24. Qual i ta t ive  fo rm of the 
mapping of the points  of the v e r -  
t i c a l  s t r i p  of the X = 0 plane into 
a hor izon ta l  s t r i p  and the h o r i -  
zontal  s t r i p  back  into a v e r t i c a l  
s t r i p .  
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Fig.  25. Point mappings of the straight  line Z into i t -  
self :  a) the initial conditions on the X = 0 plane lie in 
the s t r ip  0 < Y < Y1; b) they lie in the s t r ip  Y1 < Y < 
Y2 << 1. 

s t r ip  a re  depicted for two different cases ,  depending on the c loseness  of the ver t ica l  s t r ip  to the Z axis.  

Let us clar i fy the d iagram of the mapping for the more  complicated case depicted in Fig.  24b. F r o m  
(II.11) it follows that the higher the t ra jec tory  in te rsec ts  the ver t ica l  s t r ip  in t e rms  of the value of Z, the 
fur ther  f rom the X axis it descends onto the Z = 0 plane. The t ra jec tory  which begins on the X = 0 plane for  
fair ly large Z does not land in the domain of slow motions af ter  it has descended onto the Z = 0 plane, but 
moves immediately along the c i rc le  X 2 + y2 = R2. It is c lear  that another t ra jec tory  also a r r i ve s  in the 
vicinity of this same c i rc le ;  this t ra jec tory ,  af ter  having passed through the ver t ica l  s t r ip  at smal l  Z, 
descends onto the Z = 0 plane in the domain of slow motions and departs  f rom that domain [intersecting the 
parabola - see Fig. 23a] at X 2 ~ R 2. Thus, the t ra jec tor ies  which in tersec t  the ver t i ca l  s t r ip  with a great  
distance between them turn out to be close together when they in tersec t  the horizontal  strip,  and vice ve r sa .  
It is these facts which explain the development of the "horseshoe ~ in the mapping pat terns.  

An analysis  s imi lar  to the one ca r r i ed  out above is also applicable to t ra jec tor ies  in the domain X < 0 
which departs  f rom the Z = 0 plane and squeeze toward the Y = 0 plane; however, here the role of the parabola 
is played by the s t ra ight  line Z = -~/X (i. e., the charac te r  of the mapping of the horizontal  s t r ip  into the ve r t i -  
cal  s t r ip  is s imi lar  to the previous one). F r o m  this it follows that a double horseshoe may developed in the 
overal l  mapping diagram.  For  multiple passage through the X = 0 plane, which cor responds  to multiple appli-  
cation of mapping, the pat tern  of the motion may become ve ry  complex and confused. 

Assuming that the considered motions are  stable, let us investigate their  s t ruc ture  in grea ter  detail. 
Fo r  this purpose,  let us coa r sen  the model by identifying points having identical Z in the ver t ica l  s t r ip  and 
points having identical Y in the horizontal  s t r ip .  Under these conditions, we obtain a mapping of a straight  
line Z into i tself  instead of the mapping of a s t r ip  into a s t r ip  [i.e., we obtain the dependence of subsequent 
points Z on initial points Z : Z(Z) (see Fig. 25)]. For  different positions of the Z(Z) curve relat ive to the bi-  
sec t r ix  Z = Z, ei ther  a unique stable one-per i0d regime (see Fig.  25a) or  a set of reg imes  with modulation 
(multiperiod regimes)  corresponding to both cycles  on the Z, Z plane exists (see Fig.  25b).* 

Fur ther ,  having made use of the well-known resul ts  of the formal  theory of point- to-point  mappings 
[35, 36], one may state that if there exists periodic motion with an odd number of periods (such as, for 
example, the th ree-per iod  motion depicted in Fig.  25b), then regard less  of its stability there exists an addi- 
tional infinite (uncountable) set  of unstable mult iperiod motions and a finite (countable) number of stable ones 
exist  in the sys tem.  Thus,  the s t ruc ture  of the considered motions may actually turn out to be ext remely  
complicated.  

c) Effect of Detuning on Exact Synchronism.~ In a conservat ive triplet  the detuning, as is well known, 
dec reases  the degree of energy exchanged between nodes (for the same initial conditions). In our (noncon- 
servative)  case the same thing occurs  - i .e . ,  the maximum attainable values of Z are  diminished for X = - 1 .  

*The curve Z(Z) is deformed and is lowered or  ra i sed  as a function of the c loseness  of the ver t ica l  s t r ip  c o m -  
p ressed  into a line to the Y = 0 plane (or of the horizontal  s t r ip  to the Z = 0 plane); i . e . ,  the form of this 
ncoarsened~ mapping depends on the initial conditions on the X = 0 plane. This is the "payment" for reducing 
the dimensionali ty of the mapping. 
t Fo r  introduction of detuning the phase space of the sys tem (II.15) becomes crude - the integral  surface Y = 0 
dis integrates ,  while the equilibrium state at  the origin is converted f rom a saddle-node into a saddle-focus (see 
Fig. 26). 
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Fig.  26. Phase d iagram of the 
integral  plane Z = 0 for  5 > 0. 

Z 
Fig.  27. Discontimmus 
mapping of the s t ra ight  
line Z into itself.  

The la t ter  fact  means that situations a re  possible in which the line which is t r ans f e r r ed  during the mapping 
p roces s  by the t r a j ec to r i e s  f rom the X = 0 plane to the neighborhood of the Y = 0 plane Nsettles" on this plane 
near  the equil ibrium state X = - 1 ,  Z = T for  X < 0. This means that the considered mapping is split into two 
c l a s ses  of motions by a separa t r ix  which enters  the zero  equil ibrium state.  The t ra jec tor ies  which enter  the 
neighborhood of the Y = 0 plane in tersec t  the X = 0 plane outside the unwinding separa t r ix  (see Fig.  22) and 
move fur ther  in the direct ion of the growth of X. The same t ra jec tor ies  which fall  inside the separa t r ix  turn 
toward decreas ing  X before they in tersec t  the X = 0 plane. They in te rsec t  this plane, but only af ter  one or  
severa l  revolutions in the X < 0 domain and at values of Z which are  a l ready large.  The d iagram of the 
"coarsened"  mapping of a straight  line into a s traight  line corresponding to the situation descr ibed is displayed 
in Fig. 27. The discontinuities on the Z(Z) curves  in the region of small  Z are  prec ise ly  those which co r r e - :  
spondto the  separa t ion of the motions by separa t r ix .  For dynamic sys tems  which can be descr ibed by such a 
p tecewise-smooth  t ransformat ion ,  one may prove a very  strong statement concerning the existence of mixing 
in this sys tem for certain constra ints  [37]. 

l ~.2,3 

a 

lfi3 b 

c 
Fig. 28. Exchange of energy  between modes inthe reso  ~ 
nance case:  a) one-per iod regime for  T = 0.15; b) one-per i -  
od r e g i m e f o r  T-- 0.1; c) th ree -per iod  reg ime f o r y =  0 .1 .  
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Fig.  29. Charac te r i s t i cs  of the to ta l -s tochas t ic i ty  reg ime:  a) autocorre la t ion  
function of the real izat ion A3(t); b) the dependence 4" (t) - accumulat ion of 4" can 
be seen; c) distr ibution function of the interval  between jumps according to 
their  r ec ip roca l  duration f(1/T).  

Fig.  30. Charac te r i s t i c s  of the par t ia l -s toehas t ic i ty  reg ime:  a) au toco r r e l a -  
tion function; b) osc i l logram 4"(0 - there is no accumulat ion of 4"; c) d i s t r i -  
bution function. 

Fig.  31. Transi t ional  s tochast ic i ty :  a) autocorre la t ion  function; b) osc i l logram 
~, (t). 

Thus, the analysis which has been pe r fo rmed  demonst ra tes  that if the regime in which an unstable mode 
is stabilized due to decay into attenuating modes is possible,  then in the presence  of detuning it may be s to-  
chastic (this is in a purely dynamic sys t em! ) .  

5.  D e c a y  T r i p e t .  C o m p u t e r  E x p e r i m e n t s  

The detailed numerica l  experiments  pe r fo rmed  in [34, 38] with the sys tem (II.8) has confirmed all of the 
principal  resul ts  of the qualitative analysis .  Let us say immediately that the dynamic p rocesses  were ob- 
served  only in the absence of detuning 6 = 0, while s tochast ic  p rocesses ,  on the cont ra ry ,  were observed only 
for  5 ~ 0. Onthe o rder  of 100 real izat ions were obtained (of them 2/3 were for 6 ~ 0 ) f o r  t r iplet  values of the 
pa rame te r s  T = 0.15; 0.1; 0.01, 5 = 0; 0.001; 0.01; 0.1 and of the initial conditions A1,2, 3 = 5-10, 4"(0) = 0-2~. 

a) In the resonance case 5 = 0 two forms of motion were observed,  depending on the initial energies :  
one-per iod motions (see Fig. 28a, b} for which the maximum values of A 3 were 13-18, and multiperiod motions 
(see Fig. 28c). Under these conditions only th ree -  and four -pe r iod  motions were observed to be stable, while 
others (for example, f ive-  and s ix-per iod motions) had a small  stability domain and went over into each other 
f rom time to t ime. The amplitude of the mult iperiod motions was noticeably lower: A3max ~ 5-8, while the 
period was 1.5-3 t imes longer than that of the one-per iod motions.  Stabilization of the unstable mode w3 = 
w 1 + r 2 was possible only for  a fa i r ly  large relat ive attenuation and a low growth ra te :  namely, for  y < 1/6.  
Fo r  y ~ 1/6, the shape of the oscillations was descr ibed  approximately by elliptic functions (see Fig.  28a), while 
for  a decrease  in y it became more  and more  relaxational  - even for y = 0.1 the motions were in the fo rm of 
discontinuous exponentials for  A 3 and nar row solitons for  A 1 and A 2 (see Fig. 28b; i .e . ,  c lear ly  defined fast  
and slow motions were observed).  The period of the oscil lat ions was ~1-1.5,  while the time required  for fast  
motions was < 0.1 [with the exception of such time intervals ,  the phase 4, remained equal to approximately 
• r ega rd le s s  of the value of @(0)]. 

b) In the nonresonance case, for which the conditions for  synchronism between modes were inexactly 
satisfied (6 ~ 0), all of the observed motions were s tochast ic .  Thei r  proper t ies ,  unlike those of dynamic p ro -  
cesses ,  depended substantially on the initial conditions for  4". For  5 >0, A1,2, 3 ~ 5-10, and 4" = 0-2% three 
qualitatively different groups of s tochast ic  reg imes  were observed - their autocorrela t ion functions are  d is -  
played in Figs .  29a, 30a, and 31a. The same f igures  give the distr ibution functions of the interval between 
jumps according to their  r ec ip roca l  durations f(1/T) and the osc i l lograms of the phase differences ,I, = @(t), 
which cor respond  to these reg imes .  The amplitude real izat ions corresponding to the different s tochast ic  
reg imes  were qualitatively s imi lar ,  and only the maximum values of the amplitudes vary .  One of these typical 
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Fig .  32. O s e i l l o g r a m  of the ampl i tude  
of the unstable  model  in the s t ab i l i za t ion  
r e g i m e  for  5 = 0.01. 

r e a l i z a t i o n s  - the dependence of the ampl i tudes  of an unstable  mode on t ime - . i s  d i sp layed  in F ig .  32. The 
reg ions  of in i t i a l  va lues  of ~(0) for  which these d i f fe ren t  r e g i m e s  were  obse rved  (we sha l l  a r b i t r a r i l y  ca l l  
them "total  s t ochas t i c i t y "  - F ig .  29, Mpartial s tochas t i c i ty"  - F ig .  30, and " t r ans i t i ona l  s tochas t i c i ty"  - 
F ig .  31) a r e  dep ic ted  on the X, Y plane (see F ig .  33). Let  us add the fact  that the ave rage  per iod  (the t ime 
r e q u i r e d  for  s low motions  of a l l  of the s tochas t i c  p r o c e s s e s )  was one o r d e r  of magnitude g r e a t e r  than the 
t ime r e q u i r e d  for  s low p r o c e s s e s  in the dynamic  c a s e .  

Le t  us now d i scuss  the r e s u l t s  of the e x p e r i m e n t  f rom the point of view of the theory expounded above. 
Le t  us r e c a l l  that  the s tochas t i c  r e g i m e s  were  obse rved  only when a detuning 5 was in t roduced,  it  being true 
that  even for  a s m a l l  5 the in tens i t i e s  of these two motions Zma x or  (X 2 + y2)ma x were  app rox ima te ly  one 
o r d e r  of magnitude s m a l l e r  than for  5 = 0. Thus,  the s t a t emen t  used in the qual i ta t ive  ana lys i s  to the effect  
that the detuning reduces  the leve l  of the max ima l ly  a t ta inable  Z was conf i rmed  [it was on the b a s i s  of this 
s t a t emen t  that  the discont inuous mapping Z(Z) was obtained] .  

As it fol lowed f rom a qual i ta t ive  ana lys i s ,  d i s o r d e r e d  motions of two kinds a r e  poss ib le  in the s y s t e m  
(3) for  5 > 0. T r a j e c t o r i e s  in the r igh t  ha l f - spa c e  c o r r e s pond  to one of them - for  them Y is a lways g r e a t e r  
than 5/2,  and the accumula t ion  of the phase  d i f ference  4~ is imposs ib l e  for  pe r iod ic  or  quas ipe r iod ic  motion.  
The o ther  f o rm  of motion c o r r e s p o n d s  to t r a j e c t o r i e s  in the lef t  ha f t - space  Y < 5/2;  for  these  motions the 
accumula t ion  of the phase  d i f fe rence  is poss ib l e ,  s ince  the t r a j e c t o r i e s  may en te r  f rom the domain  Y < 0 into 
the l a y e r  0 < Y < 5/2 and, consequent ly ,  encompass  the Z ax i s .  

It is not diff icul t  to conf i rm the fact  that  the expe r imen ta l l y  obse rved  " p a r t i a l - s t o c h a s t i c i t y "  r e g i m e  i s  
p r e c i s e l y  the one that  c o r r e s p o n d s  to "r ight"  d i s o r d e r e d  motions and those "left"  ones whose t r a j e c t o r i e s  do 
not en t e r  the l a y e r  0 < Y < 5/2. Actual ly ,  dur ing the slow s tage of " r ight"  motion the phase d i f fe rence  �9 is 
c lose  to •  or  to :L(3/2)lr; then i t  v a r i e s  r ap id ly  by the amount  Ir - motion near  the Y = 5/2 + 0 plane,  a f t e r  
which i t  aga in  adopts  i ts  p rev ious  value  - mot ion near  the Z = 0 plane outside the domain of slow mot ions .  An 
analogous s i tua t ion  a l so  obtained for  "left" motions lying in the ha f t - space  Y < 0. It is p r e c i s e l y  such a p i c -  
ture  of the t ime va r i a t i on  that was a l so  obse rved  expe r imen ta l l y  in the " p a r t i a l - s t o c h a s t i c i t y "  r e g i m e  (see  
F ig .  30b). 

However ,  dur ing the p r o c e s s  of "left"  motion,  for  which the image point en te r s  the l a y e r  0 < Y < 5/2 
f rom the ha f t - space  Y < 0, the accumula t ion  is a l r e a dy  imposs ib l e  - ~ v a r i e s  by the amount  lr dur ing  the p r o -  
c e s s  of fas t  motion in this l a y e r ,  and then the t r a j e c t o r y  again  exi ts  into the left  ha f t - space  and moves  near  
the c i r c l e ,  while �9 i n c r e a s e s  by another  ~. It is  this which explains  the accumulat ion of 4~ that  is obse rved  in 
the " t o t a l - s t o c h a s t i c i t y "  r eg ime  (see F ig .  29b). 

Le t  us emphas ize  the fact  that  the p r o p e r t i e s  of the "total"  and "par t i a l "  s tochas t i c i t y  r e g i m e s  (for e x -  
ample ,  the fo rm of the au toco r r e l a t i on  function) did not depend on the ca lcu la t ion  a c c u r a c y  over  wide l imi t s .  
This  p roves  the dynamic  or ig in  of such s tochas t i c i t y  in the computer  e xpe r i m e n t s .  Only the " th ickness"  of the 
boundary s e p a r a t i n g  the ex i s tence  domains  of these r e g i m e s  (see F ig .  33) depended on the ca lcula t ion  accu racy  

X 

Fig .  33. Regions of in i t ia l  con-  
d i t ions  on the Z = 0 plane which 
c o r r e s pond  to the d i f fe ren t  s t o -  
chas t ic  r e g i m e s .  
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(actually, on the fluctuation level) within smal l  l imits .  On the actual boundary,  the s tochast ici ty regime dis-  
played in Fig.  31 was observed.  Its proper t ies  depended on the calculation accuracy ,  and it evidently does 
not charac te r ize  the intrinsic s tochast ici ty of the dynamic sys tem.  

The experiments  that were ca r r i ed  out in [34] on the degenerate interaction of the stable w and unstable 
(260 + Aw) modes [such interact ion is likewise descr ibed by the sys tem (II.11)] for  inexact synchronism (w >> 
Ar > 0) coincide completely with the resul ts  expounded aud thereby conf i rm the co r rec tnes s  of the model 
chosen [i. e., the validity of the replacement  of the sys tem ffI.8) by the sys tem (1"[.11) in the qualitative analy-  
sis] .  

Concluding the present  section,  we again focus attention on the fact  that the development of the stochast ic  
behavior  in a nonlinear nonequilibrium medium is not necessar i ly  associa ted with a large number of in ter -  
act ions.  The d isordered  behavior  which requires  s tat is t ical  methods for  its description-? may al ready develop 
in a sys tem of three and even two coupled waves (modes). 

6 .  R e s o n a n c e  I n t e r a c t i o n  o f  N o n i n c r e a s i n g  M o d e s  w i t h  

a " S e l f - o s c i l l a t o r y "  M o d e  

In connection with the analysis  of three-wave p rocesses  in a nonequilibrium medium having an "equilib- 
r ium" (al,2,3 = ai,2,3, (h,2a3 < 0) nonlinearity it is worth also mentioning the interaction of the amplified and 
nonincreasing waves in those eases when stabilization of the instability is accomplished as a resul t  of the non- 
l inear v iscos i ty  that ea ters  the game at large amplitudes of the l inearly amplified waves.$ Such viscosi ty  
may specifically be a consequence of the nonlinear distort ion of the growing siausoidal  wave as a resul t  of its 
generation of attenuating harmonics .  In the "Raman-sca t te r ing"  approximation, where the amplitudes ofthe higher 
harmonics  emula te  the amplitude of the f i r s t  harmonic ,  the equation -h  + va' = ~/a - ~a la 12 is obtained for  the 
lat ter .  The interact ion of such a "se l f -  osci l la tory"  mode with two others  in a medium having a quadratic nonlineari ty 
can be descr ibed by the sys tem 

a, + v l  d ~ = - a3 a* 2 + 7 al  - -  ~ ax t a,  t " , (II.17) 

a2 + v~. a" 2 = - -  a3 a*1, a3 + v~ a'~ ---- a,a.,_. . 

As was demonstra ted in [40], the energy flux f rom the unstable mode al into a2 and a 3 turns out to be modu- 
lated (in time for spatially uniform fields and in space for e k~ fields when interaction takes place along x). 
Under these conditions, the amplitudes of the modes oscil late,  while the phase difference per forms  "jumps." 
Here the situation is s imi lar  to that observed in a resonance tr iplet  for unstable and attenuating modes in the 
case of complete synchronism (see P a r a s .  4 and 5). 

Note that such a process  is real ized in pa ramet r i c  osci l la tors  with internal pumping [41] where the 
pumping wave is generated direct ly  in the resona tor  in which paramet r ic  conversion takes place. 

III. EXPLOSIVE INTERACTION OF WAVES 

We have a l ready said that in a noaequilibrium medium resonance interaction of waves may lead to an 
explosive instability which is more  rapid than l inear instability; under these conditions, the amplitudes of all 
of the waves increase  simultaneously and, under the idealizations usually employed, go to infinity in a finite 
time (see Pa ra .  1 of Sec. II). Formal ly ,  the "explosion" is guaranteed by the aggregate nature of the coeffi-  
cients of nonlinear interaction a, provided that max{0i} - min{0i} < 7r [see (II.2)]. However, the physical explosion 
mechanisms  may be fairly varied and depend on the nature of the wave and the charac te r  of the nonequilibrium 
of the medium. 

1 .  I n t e r a c t i o n  o f  W a v e s  H a v i n g  E n e r g i e s  o f  D i f f e r e n t  

S i g n s .  A B e a m  in  a P l a s m a  

F i r s t  of all, let us focus attention on the apparent  obvious a symmet ry  of the resonance conditions for the 
frequencies and wave numbers - the synchronism conditions. It is well known that in equilibrium media the 

t For  conservat ion sys tems ,  the development of s tochast ici ty for a number of degrees  of f reedom n = 1.5 is 
well known [39]. 
$ Such stabilization of the unstable mode is observed,  for example, for T o l l m i e n -  Schlichting waves in cer ta in  
hydrodynamic flows. The increas ing wave changes the profile of the main flow, as a consequence of which the 
growth rate is reduced.  
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t r a n s f e r  of e n e r g y  i s  p o s s i b l e  only f r o m  the h i g h e s t  f r e q u e n c y  wave  to the  l o w - f r e q u e n c y  w a v e s  bu t  not  the 
o t h e r  way ;  a t  the  s a m e  t i m e ,  t h e r e  a r e  no s u c h  c o n s t r a i n t s  on the q u a s i m o m e n t a  o f  the  w a v e .  F o r  e x a m p l e ,  
a wave  wi th  a v e r y  s m a l l  and  even  a z e r o  (a s p a t i a l l y  u n i f o r m  f i e ld )  m o m e n t u m  m a y  a l s o  d e c a y  and f o r m  a 
wave  wi th  a r b i t r a r i l y  l a r g e  bu t  o p p o s i t e l y  d i r e c t e d  m o m e n t a .  I t  is  c l e a r  t ha t  th is  a s y m m e t r y  is  a s s o c i a t e d  
wi th  the p h y s i c a l  r e a l i t y  of nega t ive  wave  n u m b e r s  (they c o r r e s p o n d  to o p p o s i t e l y  t r a v e l i n g  waves )  and  the 
a p p a r e n t  u n r e a l i t y  of nega t ive  f r e q u e n c i e s .  If  in s o m e  m e d i u m  w a v e s  hav ing  nega t ive  f r e q u e n c i e s  w e r e  to 
have  a p h y s i c a l  m e a n i n g  and w e r e  a c t u a l l y  to e x i s t ,  then  in tha t  m e d i u m  the c o n s t r a i n t s  on the c h a r a c t e r  of 
the n o n l i n e a r  i n t e r a c t i o n  which  a r e  v a l i d  f o r  e q u i l i b r i u m  m e d i a  would  t u r n  out  to be  v i o l a t e d .  

S ince  the f r e q u e n c y  c o r r e s p o n d s  to the  e n e r g y  of the  q u a s i p a r t i c l e s ,  o n e - m a y  h e n c e f o r t h  c o n s i d e r  a l l  of 
the f r e q u e n c i e s  to  be  p o s i t i v e ,  and the  w a v e s  hav ing  a nega t ive  f r e q u e n c y  m a y  be  a s s i g n e d  a nega t ive  e n e r g y  
s ign .  In t h e i r  p h y s i c a l  m e a n i n g ,  w a v e s  hav ing  a nega t ive  e n e r g y  a r e  w a v e s  which  a r e  such  tha t  the r e s u l t a n t  
e n e r g y  of the " m e d i u m - w a v e "  s y s t e m  d e c r e a s e s  wi th  i n c r e a s i n g  a m p l i t u d e .  Such w a v e s  m a y  e x i s t  in i n -  
h o m o g e n e o u s  m e d i a  [42] o r  in a m e d i u m  m a d e  up of i n v e r s e l y  popu la t ed  p a r t i c l e s  [43]. L ong i t ud ina l  e l e c t r o -  
s t a t i c  w a v e s  whose  s p e c t r u m  is  s i t u a t e d  in the r e g i o n  of a n o m a l o u s  d i s p e r s i o n  of the  m e d i u m  ae/a~o < 0 
a l s o  have  n e g a t i v e  e n e r g y ;  f o r  t h e m  the e n e r g y  is  W = (w/81r) (~e /Ow)  ( E  > < 0. 

L e t  us  c l a r i f y  the m e a n i n g  of the  c o n c e p t  of "nega t ive  e n e r g y "  u s i n g  the e x a m p l e  of s p a c e - c h a r g e  w a v e s  
in  a m o v i n g  e l e c t r o n  b e a m  which  can  be  d e s c r i b e d  b y  the  equa t ions  

0u ~ du e E = 0, 
, go ,,T 

-F Vo~x = 0,. (III.1) 
dt #x  

OE 
- - - -  4 ~ e ( n  - -  N) =. O, 
Ox 

4 r. Ne" 

In  

The  d i s p e r s i o n  equa t ion  of such  a m e d i u m  is  

~(~, k)  1 u)~ (HI.2) 
(~ --  kVoY 

I t  i s  e v i d e n t  tha t  on the  b r a n c h  w = kV 0 - w0, wh ich  c o r r e s p o n d s  to the  s l ow  wave ,  a e / a w  = 2~2o/(W - kV0) 3 = 
- 2 / w  o < 0 (i. e . ,  the  e n e r g y  of the  s low wave  i s  ne ga t i ve ) .  Th i s  is  a s s o c i a t e d  with  the fo l lowing .  In  a c c o r d a n c e  
with  (HI . l ) ,  the v e l o c i t y  p e r t u r b a t i o n s  a r e  in phase  wi th  the d e n s i t y  p e r t u r b a t i o n s  in a f a s t  wave  (w = kV 0 + ~o0), 
whi l e  in a s low wave  they  a r e  in p h a s e  o p p o s i t i o n  [44]. Consequen t ly ,  fo r  a f a s t  wave  the c o n d e n s a t i o n  s e g -  
m e n t s  have  a v e l o c i t y  e x c e e d i n g  V 0, whi le  the  r a r e f a c t i o n  s e g m e n t s  have  a v e l o c i t y  l o w e r  than  V 0. T h e r e f o r e ,  
when a f a s t  wave  i s  e x c i t e d  in the b e a m ,  the r e s u l t a n t  k i n e t i c  e n e r g y  t r a n s f e r r e d  by  the b e a m  e x c e e d s  the 
e n e r g y  t r a n s f e r r e d  by  the u n p e r t u r b e d  b e a m .  Howeve r ,  if  a s low wave  is  e x c i t e d ,  then  the  o p p o s i t e  is  t r u e :  
The  b u n c h e s  t r a v e l  m o r e  s l owly  than V0, whi le  the r a r e f a c t i o n s  t r a v e l  f a s t e r .  As  a r e s u l t ,  the  k ine t i c  e n e r g y  
t r a n s f e r r e d  b y  s u c h  a b e a m  is  l o w e r  than the e n e r g y  of  a b e a m  con ta in ing  no w a v e s .  

F o r  t r a n s v e r s e  e l e c t r o m a g n e t i c  w a v e s ,  the e n e r g y  m a y  be  nega t ive  ffor e x a m p l e ,  in a m e d i u m  c o n s i s t -  
ing  of t w o - l e v e l  p a r t i c l e s ) .  A c t u a l l y ,  in  th i s  c a s e  [43] we have  

= 1 ~ '  - -  ~12 + 2 i 7 ~ u  (III.3) 

w h e r e  wt2 i s  the t r a n s i t i o n  f r e q u e n c y ;  w~ = (4~re2N/m)d (d c h a r a c t e r i z e s  the coup l ing  of the  p a r t i c l e s  wi th  the 
f i e ld ) ;  N12 = (n 1 - n2)/n2; nl,  2 a r e  the  p o p u l a t i o n s  of the  l o w e r  and u p p e r  l e v e l s .  T h e  e n e r g y  of  the wave  a t  the 
f r e q u e n c y  w, w h e r e  w - wi2 >> T, i s  a p p r o x i m a t e l y  equa l  to 

s ('' ' = I2. [ , + " ~' ~ l' ~ l ~I] .4, 

and m a y  be  nega t ive  if  the m e d i u m  is  i n v e r t e d  (the u p p e r  l e v e l  is  p o p u l a t e d  m o r e  h e a v i l y  than  the l o w e r  l eve l ) .  
In  a c c o r d a n c e  wi th  (III.4),  the  e n e r g y  of w a v e s  hav ing  the f r e q u e n c y  

I ~12 < ~ V'nz - -  nl (III.5) 

will  be negative. 
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Fig. 34. The synchronism con-  
dition i l lustrat ing the possibili ty 
of anexp los ion ina  b e a m -  plasma 
sys tem. 

It is c lea r  that the interaction of waves having a negative energy with an absorptive medium or with 
waves having a positive energy must  be accompanied by instability - in giving up energy,  such a wave wilt 
increase  in amplitude. 

The equations describing the interaction of waves having energies  of different signs in a medium having 
a conservat ive nonlinearity that is quadratic in the field are  written in the form (~o 3 = ~01 + co 2) 

t-b-i-- + -d-x/ a,,, 
= o7), (111.6) 

{Oa3 , Oa3k 

where s i are  the signs of the wave energies .  If one of the low-frequency waves (for example, w t) has a nega- 
tive energy,  then the waves having the frequencies w 3 and w 2 interchange their ro les ,  and now only the low- 
frequency wave w 2 may decay. Explosion instability corresponds  to the case when the high-frequency (co 3) 
wave has a negative energy - under these conditions (III.6) can be reduced to (II.2), where 0t,2, 3 = 0. Namely, 
such a situation is real ized in a plasma - b e a m  sys tem for interaction of a slow beam wave with two plasma 
waves [4] (see Fig. 34). Explosion instability in a plasma with a beam was observed experimental ly in [45]. 

2 .  I n t e r a c t i o n  o f  T o l l m i e n  -- S c h l i c h t i n g  W a v e s  i n  

a B o u n d a r y  L a y e r  

Explosion instability may also develop for resonance interaction of waves having a positive energy; for  
example, in a medium whose nonlinearity is determined by the imaginary par t  of the permitt ivi ty (see below) 
or  in hydrodynamic flows with a nonuniform velocity profile,  an example of which may be found in a boundary 
layer .  

For  Reynolds numbers R = U 6 / v  > Rcr ,  weakly unstable To l lmien -Sch l i ch t ing  waves (TS waves) are  
excited in the boundary layer  [46]; the growth rate  and s t ruc ture  of these waves ac ross  the flow is determined 
f rom the solution of the l inearboundary-va lue  p rob lemt  [47]. 

For  R >Rcr ,  these are  surface waves which t ravel  along the flow (see Fig. 35). With a growth of R, in- 
c reas ing  or weakly attenuating waves appear which also t ravel  at an angle with respec t  to the flow. They were 
observed experimental ly [48] for  a fair ly large "pumping" (the "pumping" is represented  by the amplitude of 
the two-dimensional  TS wave; i . e . ,  two-dimensional  waves turn out to be unstable relat ive to th ree -d imen-  
sional perturbations) .  

F r o m  an analysis of the d ispers ion equation for three-dimensional  TS waves, it follows [49] that the 
two-dimensional  wave having the frequency w may be a synchronism with two three-dimensional  waves 
having the frequency co/2 propagating at equal but opposite angles relat ive to the main flow (see Fig.  36). All 
these three waves have an identical phase velocity v = r x along the flow and, consequently, a common c r i t i -  
cal  layer  near  Y0 - a layer  where the phase velocity of the waves coincide with the velocity of the flow U(Y0). 
It is p rec ise ly  in the neighborhood of the cr i t ica l  l ayer  that the nonlinear interaction of the waves forming the 
triplet  is s t rongest .  

The p rocess  of resonance interaction of TS waves can likewise be descr ibed by the sys tem (II.1), where 
a i are  complex and depend on the unperturbed Velocity profile in the boundary layer .  F r o m  symmet ry  con- 
cepts ,  it is obvious that a t = a 2. The specific form of o- i for  the model velocity profile 

t Usually, it is called the O r r -  Sommerfeld problem. 
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F i g .  35. T o l l m i e n - S c h l i c h t i a g  w a v e s  in a b o u n d a r y  l a y e r .  

U ( y ) = { V  ( 0 < V < I )  
] ( V >  1) 

was found in [49], whi le  fo r  an  a c t u a l  b o u n d a r y  l a y e r  on a f l a t  p l a t e  (a B l a s i u s  p r o f i l e )  i t  was  found in [50]. In 
v i ew  of a 1 = a2, an  equa t ion  that  is  s o m e w h a t  s i m p l e r  than (11.2) is  found h e r e  fo r  the  c o m p l e x  a m p l i t u d e :  

~z1~ = as a*2.1, "as = e i o az  a.,.. (111.7) 

F o r  a change  in the v e l o c i t y  p r o f i l e  in the  b o u n d a r y  l a y e r ,  the quant i ty  0 c h a n g e s  and,  c o n s e q u e n t l y ,  the 
c h a r a c t e r  of the i n t e r a c t i o n  of TS w a v e s  l i k e w i s e  c h a n g e s .  F o r  0 = n, we have  the c o n v e n t i o n a l  " e x c h a n g e "  
i n t e r a c t i o n ,  whi le  f o r  0 ~ ,r an  e x p l o s i v e  g r o w t h  of  the  a m p l i t u d e s  is  p o s s i b l e :  

cos @, ]l,s A0 
] a o l  = l a . , I  = 

" " cos (0 - -  *o) 1-- t A o  cos r 

Do 
t a ~  I = J 

1 - -  tAo  cos r  

(1H.8) 

w h e r e  the  s t e a d y - s t a t e  p h a s e  d i f f e r e n c e  b e t w e e n  the waves  @0 = a r g a 3  - a r g e 2  - a r g a i  i s  a r o o t  of the e q u a -  
t i o n  tan@ 0 = ~ t a n  (0 - r Such a p r o c e s s  of s i m u l t a n e o u s  g rowth  of the  h a r m o n i c  was  o b s e r v e d  in e x p e r t -  
m e a t s  wi th  an u n s t a b l e  b o u n d a r y  l a y e r  on a f i a t  p l a t e  - s e e  F i g .  37 [48]. 

% = - ~  o,06 
~c =0o954-'~ *:Iv / / / 2 _ z a ~ / / , , , / a  v ' - t  

, , , , : . ~ . . ~ %  , w ~ ,  , o,o~ 

-o,4 -o~  o o,~ ~ = t  z o 

2r 
I 

2 6 .!0 44 

F i g .  36 F i g .  37 

I 

~C 1 cr l ' I  

F i g .  36. S y n c h r o n i s m  con d i t i ons  f o r  a t w o - d i m e n s i o n a l  and  two t h r e e -  
d i m e n s i o n a l  TS  �9 

F i g .  37. S i m u l t a n e o u s  g r o w t h  of the h a r m o n i c s  of  TS w a v e s  in a b o u n d a r y  
l a y e r  on a f l a t  p l a t e .  
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F ig .  38. Dependence of ,the conduct ivi ty  on the f ie ld  for  tunnel 
t r ans i t i ons  and Gunn s em i c onduc t o r s .  

F ig .  39. Explos ion  ins tab i l i ty  in space  for  the in te rac t ion  of the 
wave and its second ha rmonic  in an LC line with tunnel d iodes .  

This  p r o c e s s ,  however ,  cannot go fa r enough, s ince for  a boundary l a y e r  having no "d r a i na ge ,  the 
Reynolds  number  i n c r e a s e s  downward along the flow, and secondary  ins t ab i l i t i e s  develop - the waves con-  
s i d e r e d  exci te  pe r tu rba t i ons  having h igher  f r equenc ie s .  As a r e su l t ,  developed turbulence  of the boundary 
l a y e r  is e s t ab l i shed .  

Let  us add that  in accordance  with a l i nea r  ana lys i s  the condit ions governing resonance  coupling may be 
fulf i l led immed ia t e ly  for  s e v e r a l  wave t r i p l e t s  (see F ig .  36); i . e . ,  tu rbulence  may develop even be fore  the 
development  of s econda ry  hf i n s t ab i l i t i e s  (see P a r a .  3, Sec. IV). 

3 .  E x p l o s i o n  I n s t a b i l i t y  i n  a n  A c t i v e  M e d i u m  

The s imul taneous  growth of the ampl i tude  of r e s ona nc e - c oup l e d  waves having a pos i t ive  energy  is a l so  
poss ib l e  in ac t ive  media  - spec i f i ca l ly ,  in media  such that  the nonl inear  conduct ivi ty has a d e c r e a s i n g  segment  
(see F ig .  38) - d i s t r i bu t ed  tunnel t r ans i t i ons  [5, 51], Gunn semiconduc to r s  [52], e tc .  Such a medium may be 
cons ide red  quadra t ic  (the imag ina ry  pa r t  of the pe r m i t t i v i t y  is  p ropor t iona l  to the field) if the opera t ing  point 
is p laced  at  the peak of the c h a r a c t e r i s t i c .  It is easy  to conf i rm the development  of an explosion as  fol lows.  
In an equ i l ib r ium quadra t ic  medium,  where  the r e a l  pa r t  of e (e = e H  u) is p ropor t iona l  to the f ield,  the equation 
for  the ampl i tudes  of the coupled waves may be wr i t t en  in such a way that  a l l  of the coeff ic ients  of nonl inear  
in te rac t ion  will  be pure ly  imag ina ry  and of the same sign al,2,3 ~ ieH. Assuming  now that the nonl inear i ty  is 
imag ina ry ,  we obviously a r r i v e  at Eqs .  (H.2); for  01,2, 3 = 0, which d e s c r i b e s  an explosion,  the coeff ic ients  a r e  
r e a l  and of the same  sign.  

The phys ica l  cause  of the "explosion" is convenient ly c l a r i f i e d  for  the case  of degenera te  in te rac t ion :  
wt + w2 = w3 [al -= a2 in (II.2)]. F o r  a harmonic  wave, the ampl i f i ca t ion  in a medium having the c u r r e n t  den-  
s i ty  j (u) = - a u  2 is absen t  on the ave rage  over  a pe r iod  - during one ha l f - cyc le  the medium has posi t ive  con- 
duct ivi ty ,  while dur ing the other  it  has negative conduct ivi ty .  F o r  osc i l l a t ions  which a r e  n o n s y m m e t r i c a l  over  
a pe r iod  (such as  the sum of two harmonics )  this is not so - the nonl inear  ampl i f i ca t ion  may exceed the ab-  
sorp t ion ,  and the ampl i tude  of the two ha rmonics  wi l l  i n c r e a s e  s imul taneous ly .  

Such a growth was obse rved  expe r imen ta l l y  [51] in a two-wi re  t r a n s m i s s i o n  line with nonl inear  leakage;  
the dependence of the c u r r e n t  on the vol tage in such a line has the fo rm shown in F ig .  38. Tunnel diodes whose 
opera t ing  point was brought  out onto the peak of the c h a r a c t e r i s t i c  were  used as the leakage e l emen t s .  In 
F ig .  39 i t  is evident  that the ampl i tudes  of the in te rac t ing  waves i n c r e a s e  s imul taneous ly  along the line (curves 
2, 3). However ,  if the condit ions for  synchron i sm between them were  d i s rup ted ,  then the ampl i tudes  of the 
waves a r e  not changed, or ,  when at tenuat ion was in t roduced into the l ine they d e c r e a s e d  along x (see curve  1). 
An analogous p r o c e s s  was a l so  obse rved  fo r  nondegenerate  in t e rac t ion  when a th i rd  wave at  the combinat ion  
f requency develops  in the p r e s e n c e  of two waves;  the genera t ion  of this  combina t ion- f requency  wave was a c -  
companied  by a growth (!) of a l l  th ree  waves .  

4 .  I n t e r a c t i o n  o f  P u l s e s  a n d  B e a m s  d u r i n g  E x p l o s i v e  I n s t a b i l i t y  

If the width of the beam or  the dura t ion  of the pulses  is l e s s  than o r  of the o r d e r  of the c h a r a c t e r i s t i c  
dura t ion  or  length of the i r  in te rac t ion ,  then they can no longer  be t r e a t e d  as  spa t i a l l y  homogeneous ,  and i t  is  
n e c e s s a r y  to take account  of the f in i teness  of the i r  p ropaga t ion  ve loc i ty .  The group d i s s y n c h r o n i s m  which 
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develops in the general  case  may be reduced,  for  example, to a situation in which before the pulses or  wave 
beams in teract  they have time to d isperse  in space.  However, even for  a great  difference in veloci t ies ,  this 
may not occur .  

The analytic difficulties which develop in solving such problems can be overcome only in individual 
cases  - specif ical ly in analyzing degenerate  interact ions such as the interact ion of a wave and a second h a r -  
monic [53], o r  for  specific initial conditions [54]. 

The equations 

al,', + V V az,2 = a~. 1 a3, /z3 + V3 V as = az a2 (i11.9) 

are  the original  ones here and have the initial conditions 

aj(x, g, z,  O) -= ajo(X, y, z). (111.10) 

It a l ready follows direct ly  f rom the fo rm of the equations that their  solutions have cer ta in  s imi la r i ty  p rope r -  
t ies.  Thus,  if a j(r ,  L) is the solution of (III.9), (III.10), then Sj = 3aj(3r, or) is the solution of the same sys tem 
but with different initial conditions: Sj(r, 0) = 3aj0(/3r), where B = const .  F r o m  this there follows specifically 
the ve ry  useful resu l t  that the interaction of shor t  pulses having a large amplitude is analogous to the in ter -  
action of long pulses having a smal l  amplitude. Problems of the interaction of fas t  pulses of large amplitude 
and of slow pulses of smal l  amplitude a re  s imi la r ;  if aj = oj (r, t) is the solution of (/II.9), (III.10), then ~j = 
flaj(r, fit) is the solution of ([II.9), where Vj --" flVj, with the initial conditions ~j(r, 0) = flaj0(r). For  localized 
fields there follow additionally from (III.9) the integrals  

N 1 - N ~ - - l  1 N I - - N 3 = 1 2 ,  A ~ - - N  3=1~,  (III.11) 

Nj : ~ I~jJ'e,-, 

which mean that the number of quanta in individual pulses or beams increase  or decrease  simultaneously (i .e. ,  
just  as for  spatially homogeneous fields,~ "explosion" is possible for  the interaction of pulses or  beams) .  

As a resul t  of the explosion, the pulses do not have time to d isperse ,  and their  increas ing  fields are  
concentrated in a nar row needle-shaped region - the merging of pulses of resonance-coupled  waves into one 
pulse takes place.  For  interact ion of beams that propagate at an angle with respec t  to each other,  the m e r -  
ging effect consis ts  in localization of the field coupled waves along a single ray.  The merging  of pulses for  
three-wave interact ion is i l lustrated in Fig. 40. These numerical  resul ts  [53] were obtained for  coll isions of 
oppositely t ravel ing pulses having an initial shape in the form of a bell.  Here the surpr i s ing  effect is that the 
explosion time (its dependence on the initial amplitude is given in Fig.  41) may exceed by an a r b i t r a r y  amount 
the t ime required  for  l inear  "hopping" of the pulses past  one another (this contradicts  our intuition which 
tells us that for  A V g r / / p u  l = rdisp << rex p each of the pulses must ignore the others).  

The merging of pulses takes place only when a cer ta in  initial-amplitude threshold is exceeded. For  
weak initial fields, there is no "explosion," and the pulses d isperse .  It is easy  to est imate  the threshold in 
the st ipulated-field approximation for  one of the pulses .  Then instead of (IH.9) we shall  have 

A~ + V~A~ = A,(x)A~, A 3 + VsA~ = A2(x)Az. (Ili.12) 

Fo r  t >> T = l /u ,  where u = V 3 = -Vt ,  A2(x) = a cosh -2 (x/l), this sys tem has the asymptot ic  solution: 

t Besides the case in which wide beams or  long pulses interact ,  spatially homogeneous solutions are  also sui t -  
able for  the case of complete group synchronism:  Vj = V. 

"~0 I'~.~ ~ ~=~4 1 

- t  0 ~ -~1 Oi. ~ I 

~ , A ' I  ~.  2 - .  ~" ~-" I x:., -..~ 
-.4 0 4 - 2  - t  0 4 P_ 

Fig.  40. Merging of pulses for  ex-  
plosion instabili ty.  

2 

the- r 2 h 

Fig.  41. Dependence of the e x p l o -  
s ion  t ime  on the initial ampl i tudes  
of the co l l id ing  p u l s e s .  
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ch" (x l) exp - ~-~ + t , (lII.13) 

where n = oT;  c is a constant  determined f rom the initial conditions. It is evident that for  21o/u > 1 a growth 
of the fields AI, 3 takes place which then leads to explosion, while for  2la/u < 1 the pulses A1,3(x, 0) << A2(x, 0) 
d isperse .  

In conclusion, let us turn our attention to one fact  which derives f rom the resul ts  presented.  The 
velocity of the leading edges of the interact ing pulses during explosive instability is, inprac t ice ,  in no way r e -  
lated to the l inear group velocity of the waves.  For  example, it may even be substantially grea ter  than the 
velocity of light. This effect can be explained by the intense generation of all of the waves in the region of the 
overlap of the pulses.  In other  words,  the velocity of the leading edge of the pulse in a nonequilibrium medium 
is determined not so much by the t ranspor t  of quasipart ic les  f rom one region of space into another,  bu tby the  
production of quasipar t ic les ,  including in places where there were no such par t ic les .  "Fas te r - than- l igh t"  
propagation of pulses is also possible for se l f -act ion of waves - specifically for propagation of a pulse in a 
l a se r  medium [55]. 

I V .  W A V E  T U R B U L E N C E  IN N O N E Q U I L I B R I U M  M E D I A  

1.  G e n e r a l  C o n c e p t s  

For  the development of a dynamic beam in the form of nonlinear waves in a nonequilibrium medium where 
a large number of modes may be excited, one usually requi res  fair ly specific conditions [5] (a resonator ,  
spectral ly  narrow instability, s t rong dispersion,  etc.). Considerably more  frequently a turbulent state de- 
velops for excitation of a large number of modes in a nonequilibrium medium - intense wave motion turns out 
to be d isordered.  Here let us discuss  cer ta in  features  of turbulent p rocesses  in dissipative nonequilibrium 
media. The mention of the nonequilibrium nature of the medium along with the te rm "turbulence" possibly 
appears  to be redundant - it is, af ter  all, specifically with the nonequilibrium nature of the medium that the 
ve ry  fact of the development of turbulence is associated.* However, in the major i ty  of cases  in which turbu- 
lence is discussed,  we have in mind only those physical  situations for which the instability and dissipation 
domain may be spread so far  apar t  in k -space  that they will play only the role of boundary conditions, while 
the actual cha rac t e r  of the turbulence will depend on the proper t ies  of the medium in the inert ial  interval  
(where there is no instability or dissipation). We shall understand turbulence in nonequilibrium media to 
mean turbulence throughout the entire spec t ra l  space,  including outside the inertial  interval,  principal at ten- 
tion being devoted to those cases  in which the inert ial  interval is smal l  or absent al together.  It is c lear  that 
the propert ies  of such turbulence are  not determined by the flow of energy along the spectrum, and this turbu- 
lence is not Kolmogorovian.  Problems in hydromechanics  (turbulence in a boundary layer ,  the case of ther -  
mal convection, etc.), plasma physics (for example, acoustic or Langmuir  turbulence in a plasma with col -  
lisions), radiophysics  (waves o fse l f -exc i tednoise  osci l lators) ,  and o thers , l ead  to the investigation of turbu- 
lence of this kind. 

In analyzing turbulence, it is usually the case to r e s t r i c t  the analysis to the determinat ion of the turbu- 
lence spect rum.  At the same time, it is obvious that the spect rum incompletely charac te r izes  the turbulence. 
For  example, in an inert ial  interval  the Kolmogorovian spec t rum k -s/'3 is also obtained for  a s t rong vor t ica l  
turbulence and a weak wave turbulence within the f ramework of the random-phase  approximation (for example, 
for  gravi ta t ional-capi l lary  waves [56]), as well as for other models.  Moreover,  the spec t rum has nothing of 
the mechanism governing the development and establishment of the turbulence or of its s t ructure ,  whose inves-  
tigation is of obvious interest .  It is specifically to these problems that we shall devote the concluding portion 
of the lec tures .  

In both wave and hydrodynamic turbulence, the most  frequently encountered (and therefore already fair ly 
f ami l i a r  now) mechanism for the development of turbulence is associated with the development of a chain of 
success ive  instabilities and the re lay t ransfer  of energy f rom some scales  to others [16] (more frequently 
f rom large ones to small  ones). It is specifically this mechanism that corresponds  to Kolmogorovian turbu- 
lence. However, for nonequilibrium media it is more  likely an exception. In nonequilibrium dissipative 

*In equilibrium media, it is also possible for d isordered motions to occur  in which many degrees of f reedom 
are  occupied, but these motions cor respond  not to turbulence but to thermalizat ion - a redistr ibut ion of energy 
among various modes which leads to the establ ishment  of thermodynamic equilibrium. The intensity of these 
motions is determined uniquely by the tempera ture  of the medium, which is the only pa ramete r  of the s teady-  
s tate  Gibbs distribution. 
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media,  the mechanism for the development of turbulence turns  out lobe  very  specific.  This specific mechanism 
is caused by two fac tors :  1) due to l inear  especial ly nonlinear instability (for example, explosion instability) 
it is possible to have a simultaneous growth of perturbations having completely different sca les ,  whose ampl i -  
tude limitation may be caused both by the t rans fe r  of energy to attenuating modes and by nonlinear dissipation 
of energy within the instabil i ty domains,  and 2) for multimode interact ions in nonequilibrium dissipative media, 
the absence of randomizat ion of the phases of the modes is mos t  cha rac te r i s t i c  {i.e., e ssen t ia l ly ,  weak turbu-  
lence is possible).  In view of the importance of the lat ter  fact, let us dwell on it in g rea te r  detail. 

Using the example of three-wave p rocesses ,  we have seen (see Pa ra .  4, Sec. [I) that even in media 
having a smal l  nonlinearity the phases ei ther  synchronize or va ry  with the sarde charac te r i s t i c  t imes as the 
amplitudes for interacting of unstable modes with each other or with attenuating modes.  As the physical  and 
computer  experiments  (see below) showed, the situation is also the same for multimode p rocesses .  Quali- 
tatively, the difference f rom "equilibrium" media may be explained here as follows- For  a sufficiently large  
width of the inert ial  interval,  the phase which is imposed on the harmonics  lying in the t ransparency domain 
by the unstable modes is forgotten with depar ture  f rom the boundary of the instability domain due to in ter -  
action with a large number of modes within the inert ial  interval  (it is assumed that the medium has a weak 
dispersion) .  However, if the inert ial  interval  is absent,  the attenuation that p rog re s se s  with a growth of the 
mode number breaks  this relay,  and the unstable modes efficiently excite only severa l  attenuating modes  
which are  close to exact resonance along with them. Such a picture is also observed in media having an 
inert ial  interval  that is not wide, when the number of interact ions within the inert ial  interval  is not too high. 
As an example, we present  the resul ts  of a computer  experiment  [57] on the stabilization of an unstable ion- 
sound mode due to the t rans fe r  of its energy upward along the spect rum.  A model consis t ing of 10 modes 
with a growth rate ~/0 for the f i r s t  mode and an attenuation v = 10~0 for the tenth mode was investigated (the 
inert ial  interval  was nine harmonics) .  It turned out that both for small  d ispers ion and in the absence of d i s -  
pers ion the cascade t ransfer  of energy fro/n mode to mode does not occur ,  and the s ta t ionary energy d i s t r i -  
bution E(~) corresponding to a constant energy flow along the spec t rum is not established. The energy of all 
of the modes osci l la tes ,  vary ing  by more  than two orders  of magnitude, it being true that the energy "burs ts"  
for var ious  modes take place with a smal l  time spread (almost in-phase) - see Fig. 42. 

Thus,  even for a smal l  nonlinearity the approximation involving random phases and a weak coupling 
between modes (small energy exchange between them) is usually invalid in nonequilibrium dissipative media,  
and in this sense the turbulence of such media is usually strong.* Let us consider  the principal  mechanism 
for the development and establ ishment  of such a turbulence by relat ing them to the charac te r  of instabilities 
in the media.  

2 .  T u r b u l e n c e  i n  M e d i a  H a v i n g  L i n e a r  I n s t a b i l i t y  

a n d  A t t e n u a t i o n  

Let us investigate how a low-frequency (acoustic) turbulence is excited, for example, as a resul t  of para-  
met r ic  instabilities in a nonlinear dissipative medium having dispersion.  In o rder  to be specific,  we shall 
assume that in the l inear approximation the spec t rum of the low-frequency waves is analogous to the spec-  
t rum of ion sound in a nonisothermal  plasma (a s imi lar  spec t rum cha rac te r i zes  helicons,  spin waves, etc.), 

* Note that s t rong wave turbulence has already been discussed frequently both for  dissipative media (B~rgers 
turbulence - an ensemble of sawtooth waves with random phases [58]) and for  media close to conservative 
media (for example, Langmuir  turbulence in the form of a gas of solitons [59]). 

Fig. 42. Oscillations of the 
energy of the harmonics  for 
instability associa ted  with the 
f ir  s t ha rm onica nd a tte nua ti on 
associated with the tenth h a r -  
monic [57]. 
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while  the mode which flows due to p a r a m e t r i c  ins t ab i l i ty  of waves of a d i f fe ren t  type (for example ,  Langmui r  
waves)  l i e s  on the boundary  of the s t r o n g - d i s p e r s i o n  domain.  Under  these condi t ions ,  energy  t r a n s f e r  upward 
along the s p e c t r u m  does not take p lace ,  and one may l imi t  the ana lys i s  so le ly  to decay p r o c e s s e s .  

a) Nar row Exci ta t ion  Spec t rum.  The or ig ina l  equations for  complex  ampl i tudes  of the s p e c t r a l  compo-  
nents which i n t e r a c t  in a quadra t ic  medium can be wr i t t en  in the fo rm 

A 

d~ = ,~ (k) baL_ k e' ~'~ (k) , _ "~k ak. (IV.2) 

Here  b is the complex  ampl i tude  of the wave at  the f requency co 0 that  is p a r a m e t r i c a l l y  exci ted  with the growth 
r a t e  T; ak is the complex  ampl i tude  of the k - th  component  of the spec t rum;  v k is  its a t tenuat ion r a t e ;  k = 
k(co), k 0 = k(w0). As follows f rom (IV.2), the s t ab i l i za t ion  of an unstable  mode due to decay and energy  d i s s i -  
pat ion in modes  having longer  wavelengths is poss ib le  only in the p r e s e n c e  of f luctuat ions in the lower  por t ion  
of the spec t rum.  If the leve l  of the in i t i a l  f luctuat ion does not depend on f requency,  then those s p e c t r a l  p a i r s  
that  a r e  s y m m e t r i c a l  r e l a t ive  to 0)0/2, k0/2 wil l  be p redominan t ly  exci ted  for  which k ~ k0/2 - for  them the 
decay  growth r a t e  is  a maximum;  however ,  p a i r s  having l(k0/2) - kl ~ k0/2 that a r e  fa r  f rom the cen t e r  of the 
s p e c t r u m  do not grow at al l ,  which is taken into account  in (IV.l) (2A/k 0 << 1). 

To answer  the quest ion of the nonl inear  evolut ion of the s p e c t r u m  of in i t ia l  f luctuat ions ,  we make use of 
the r e s u l t s  of a compute r  expe r imen t  on the in te rac t ion  of d i f ferent  decay  pa i r s  [34]. It turns  out that  c lose  
p a i r s  a r e  mutual ly  synchron ized  with r e s p e c t  to the i r  phases  and fo rm coupled s t a t e s  - domains  in k - s p a c e . t  
In the dynamic case  (there is no d i spe r s ion :  Aco = 0), the s p e c t r a l  width ~2 of the k -doma in  d e c r e a s e s  slowly 
with a growth of the r e l a t ive  a t tenuat ion of the p a i r s  - for  v /~  = 10, ~2 = 0.1, while for  v/T = 30, f~ = 0.06. 
When d i s p e r s i o n  is taken into account  - s tochas t i c  t r i p l e t s  (see P a r a .  4, Sec. H) - the width of the k - d o m a i n  
is independent of v / T  over  wide l imi t s  and i n c r e a s e s  l i nea r ly  with a growth of the detuning Aco within the 
t r i p l e t .  F o r  example ,  for  10 < v/ 'y < 100, ~2 ~ 30Aw .  

F o r  a s p e c t r a l l y  na r row growth ra te  of the unstable  mode,  only one pa i r  of domains  may ex is t  a t  each 
t ime ,  as  expe r imen t  has shown. This  is evident ly  r e l a t e d  to the fact  that d i f ferent  p a i r s  a r e  suppl ied  f rom 
one s p e c t r a l l y  n a r r o w  source  and supp re s s  each other  dur ing in terac t ion .$  The p re sence  of f luctuat ions leads  
to a s i tuat ion in which the l i fe t ime  of an a r b i t r a r y  pa i r  of domains  turns out to be finite,  and the s y s t e m  goes 
over  randomly  f rom a s ta te  with one exci ted  pa i r  to a s ta te  with the other  exc i ted  pa i r .  Phys i ca l ly ,  this r e -  
sul t  appea r s  to be f a i r l y  obvious s ince  decay  p a i r s  ac tua l ly  ex i s t  only dur ing  a s m a l l  f rac t ion  of the "per iod"  
T 0 of the t r i p l e t  (their in tens i t i es  have the fo rm of sequences  of na r row peaks;  see  Fig .  32); the random in-  
tens i ty  sp ikes  of the other  s p e c t r a l  components  in the in te rva l  between peaks induce the decay  of the unstable  
mode into a new pa i r ,  e tc .  In the compute r  exper imen t ,  the l i fe t ime of the pa i r  turned out to equal Tpair ~ 
(10-50) T 0. The f requency d i s t r iba t ion func t ion  of the p a i r s  had a maximum c lose  to Wo/2 (Fig. 43). 

Thus,  for  a na r row exc i ta t ion  s p e c t r u m  the turbulence in the case  given r e p r e s e n t s  an ensemble  of 
decay  p a i r s  of k -doma ins  that "g i rd le"  in t ime - a t  each t ime only one pa i r  ex i s t s  that is r e p l a c e d  by another  
accord ing  to a r andom law. In view of the fact  that the f requency of an appea rance  of the pa i r s  i n c r e a s e s  as 

t The p r o c e s s  of concen t ra t ing  the energy  of a decaying mode in domains is r e m i n i s c e n t  of the development  
of j e t s  in k - s p a c e  - for  example ,  for  s ca t t e r i n g  of waves by p a r t i c l e s  [60]. The d is t inc t ion  of these  p r o -  
c e s s e s  r e s i d e s  spec i f i ca l ly  in the fact  that  the phases  of d i f fe ren t  modes  within the j e t  a r e  random,  while in-  
s ide  a domain the phase of the s p e c t r a l  components  is constant  and is not dependent  on w (or on k). 
$ This  p r o c e s s  is  s i m i l a r  to mode compet i t ion  in a l a s e r  with a homogeneously  b roadened  line of an ac t ive  
subs tance  [61]. 

F ig .  43. S ta t ionary  tu rbu lence  
of a WgurglingW t r i p l e t .  
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w0/2 , the spec t rum of s ta t ionary turbulence must  qualitatively appear  as it does in Fig.  47 in the case ~'k = 
const .  

b) Kinetic Equation for  Decay Tr ip le ts .  If the instability domain of decaying modes is wide in w-space  
in compar i son  with the width of the domains,  it is a l ready possible for  different pai rs  of domains to coexist .* 
In this case ,  the turbulence is an ensemble of decay tr iplets  whose proper t ies  we al ready know. The spec-  
t rum of this turbulence in the ze ro  approximation ("ideal" t r iplet  gas) is simply a superposi t ion of the spec-  
t ra  of individual t r iplets  which are  distinguished by the frequencies of the hf modes and their  growth ra tes .  

In accordance  with computer  experiments ,  decay tr iplets  turn out to be stable relat ive to finite external 
per turbat ions .  Therefore ,  when coll isions are  taken into account in a gas of t r iplets ,  the lat ter  may be treated 
as complex indivisible quasipar t ic les .  One should descr ibe  such a gas by the kinetic equation for these quasi-  
par t ic les .  Unlike the kinetic equation for  e lementary  quasipar t ic les  (i. e., quasiharmonic waves whose phases 
are  assumed to be random), in the case given the kinetic equation is der ived naturally without r e s o r t  to addi- 
tional hypotheses of the phf type [39]. This can be explained by the fact  that the phases of the waves in each 
t r iplet  jump due to internal interact ions,  and in analyzing p rocesses  in which waves f rom different triplets 
part icipate the phases should be considered random. 

The equations descr ib ing a "real"  gas of tr iplets are  not difficult to obtain if the following is taken into 
account.  The interaction of decay tr iplets  is rea l ized only due to long-l ived unstable modes (see Fig.  21), 
since attenuating modes f rom different t r iplets  do not overlap in time - they have the fo rm of shor t  pulses 
whose duration is substantially shor te r  than their  average sufficient time, the burs ts  of I f  m o d e s  f rom dif- 
ferent  t r iplets  being uncorre la ted .  However, the interaction between unstable hf modes may be caused only 
by those sound perturbations whose frequencies and wave numbers are  smal le r  than or of the o rder  of the 
spec t ra l  widths of the instability domain.r Since in our case the width of the instability domain is assumed to 
be much smal l e r  than the frequency of the hf modes,  the des i red  equations are  found within the f ramework  
of the adiabatic approximation [62] in which hf modes having random phases propagate in a slowly vary ing  
(due to low-frequency sound) medium. As a result ,  we shall have the kinetic equation for the hf modes  and 
the hydrodynamic equation for  the ]_f sound for  paramet r ica l ly  excited one-dimensional  sound waves:  

ON vkON~ 02~ ONk 7 k N k _ _ % N  2 
�9 k + O x  - - s  Ox"- Ok ~'  

qv.3) 
02~ v ;  = - -  s - -  '~, N~ + " ~ s - - .  
Ot - ~  - " Ox ~ Ox "7 Ot Ox 2 

Here N k is the intensity of the k- th  :hf mode; ~ is a var iable  charac te r iz ing  the low-frequency sound per tu r -  
bation; s is a constant  which depends on the normalizat ion;  v s is the v iscos i ty ;  Yk is the l inear  growth rate 
of the hf modes,  while PkN~ is a model t e rm descr ibing the stabilization of the hf mode due to decay into 
attenuating modes inside the triplet ,  it being true that "yk/Pk = N (~ (the average level of the h f  mode in the 
s ta t ionary-s tabi l iza t ion regime in an autonomous triplet).  

An "ideal" tr iplet  gas cor responds  to a state having ~ = 0,which exists only for a uniform distribution of 
the energy of the hf modes in space.  It can easi ly be seen that such a state is unstable relative to longwave 
per turbat ions .  Specifically, the s ta t ionary regime Nk(X , t) = Nk(~ is unstable relat ive to perturbations having 
the charac te r i s t i c  scale 

Here o~ : Nk(~ - Nk(0)(ki); 
modes is nonzero.  

]( 
A > 0 (:c > %r)- 

(IV .4) 

ki, 2 a re  the boundaries of the domain in k - space  where the growth rate  of the hf 

* Continuing the analogy with l a se r s ,  it may be noted that this case is s imi la r  to simultaneous generation of 
many modes in a medium with inhomogeneous broadening of a line - different modes de-exci te  different active 
par t ic les .  
1' Let  us reca l l  that we a re  consider ing waves whose spectra  is analogous to the spec t rum of ion-sound - at 
low frequencies there is no dispers ion,  while at  high frequencies the dispers ion is s trong,  as a consequence 
of which the merging  p rocesses  are  forbidden. 

537 



Fig.  44. Conservation of the spatial s t ruc tures  
associa ted with explosive interaction in turbulent 
thermal  convection [69]. 

Thus, the gas of tr iplets  is unstable relat ive to the parti t ioning of a spatially uniform distribution into 
bunches.  

3 .  T u r b u l e n c e  S t r u c t u r e  f o r  E x p l o s i v e  I n s t a b i l i t y  

Resonance interact ion of a large number of modes in a nonequilibrium medium for  explosive instability 
can be descr ibed by an equation of the following fo rm in a fair ly general  case :  

ak = Tkak § ~, ~lyka~a; - -  ~ ?t~ak I at ]2 (IV.5) 

Here Tk is the l inear  growth rate or  attenuation ra te ;  ~ charac te r i zes  the nonlinear growth rate (all aijk are  
rea l  and of the same sign, which ensures  explosive instability); the last  t e rm descr ibes  the nonlinear attenua- 
tion which is associa ted  ei ther  with the t ransfer  of energy over the spec t rum by means of rapidly attenuating 
modes (they a re  expressed  algebraical ly  in te rms  of a k) or with a nonlinear v iscos i ty  or  conductivity. T h i s  
equation descr ibes  the p rocesses  of interaction of T o l l m i e n -  Schlichting waves in a boundary layer  with dra in-  
age, "explosion" modes in thermal  convection in a layer  that is heated f rom the bottom by a liquid whose v i s -  
cosi ty depends on tempera ture  [63], waves in an active waveguide [68], etc. 

The cha rac t e r  of the turbulence which develops as a resul t  of the excitation of a large number of modes 
is determined in the case given by the relat ionship between the pa rame te r s  7, a, and p. For  o2/p'y << 1, the 
s teady-s ta te  intensity of the turbulent pulsations is of the order  of N O ~ T/P, and the explosive interaction 
takes effect only during the last  stage when the nonlinear stabilization and nonlinear instability p rocesses  
approximately balance each other.  The explosion phase-synchronizat ion time turns out here to be substan-  
tially g rea te r  than the time for  interaction due to cubic nonlinearity.  Therefore ,  for o'2/p7 << 1 the p rocess  
may be descr ibed by a conventional kinetic equation derived in the approximation based on random phases of 
the waves (weak turbulence): 

The explosive interact ion descr ibed in (IV.6) by the last  t e rm leads only to a redis t r ibut ion of the energy along 
the modes.  Thus,  in the case given the "explosion" essential ly has no effect on the s t ruc ture  of the turbulence. 

The situation will be qualitatively different i f  the "explosion" phase-synchronizat ion time too ~ 1/aA turns 
out to be less  than Tnonlin ~ 1/pA 2. Inthis  case, well-defined formations - explosion tr iplets  - will develop in 
the beginning f rom the fluctuations as a resul t  of the action of explosive instability; these format ions,  af ter  
they have formed,  will interact  with one another.  Under these conditions, they will r emain  internally stable - 
the amplitudes of the modes inside the triplet  will be uniquely coupled, while the phases will be mutually syn-  
chronized.  Repeating the reasoning that is usually used as the basis  for the random-phase  approximation for  
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kiA Fig.  45. Dependence of the turbulence spec t rum ac -  
companying thermal  conduction in a liquid having 
v = v (T*) on the turbulence s t ruc ture :  1) spec t rum of 
weak turbulence; 2) spect rum of turbulence in the form 
of an ensemble of explosion t r iplets .  

simple quasipar t ic les ,  one may consider  the interact ion of explosion tr iplets  with noneommensurate  sca les  
(k) within the f ramework  of the kinet ic  equation for  tr iplets* [63] 

._ = T'J ' ,k  --~ ~ 9v, N , N , +  ~.. I= I2(N,N~,+N,Nj+N)N, )  :, (IV.7) 
l 

where N k is the intensity of a tr iplet  for which all three modes have a wave number of the same order  of mag-  
nitude (in the major i ty  of cases  it is p rec i se ly  for  them that the "explosion" growth rate  a turns out to be 
maximal) .  

Turbulence in the fo rm of an ensemble of t r iplets  was evidently observed experimental ly  in a layer  of 
heated liquid in which the v iscos i ty  depended on tempera ture  [69] - see Fig. 44. 

Thus,  for  o ' 2 / p T  ~ 1 the turbulence in a medium having explosion instability is no longer weak and con-  
s t i tutes  an ensemble of interact ing explosion tr iplets .  A change in the turbulence s t ruc ture  also leads to a 
substantial  change in its spec t rum.  In [63], the turbulence spectra  are  found in the case when the Rayleigh 
number is of the o rder  of severa l  cr i t ical  numbers for thermal  convection in a layer  of liquid heated f rom the 
bottom. It turned out that the development of tr iplets  leads to an increase  in the energy of turbulent pulsations 
in the region of large scale - see Fig.  45. 

4 .  M u l t i p h a s e  T u r b u l e n c e  

The turbulence in the fo rm of an ensemble of triplets (explosion or decay) investigated ear l ie r  is a pa r -  
t icular  case of s t rong wave turbulence.  Bffrgers turbulence in the fo rm of an ensemble of sawtooth waves 
having random phases [58] and gas solitons [70] should also be classif ied as such turbulences.  In tim language 
of quasipar t ic les ,  s t rong turbulence is an ensemble of complex quasipart ieles  having s t rong internal stabil i ty 
and interact ing weakly with each other.  

However, it can easi ly be noticed that turbulence in the form of a gas of identical quasipart ic les  exists  
only under fully defined (and somet imes  fair ly specific) conditions. Thus, in o rde r  for acoustic turbulence to 
be of the Bffrgers type it is necessa ry  for  there to be an a lmost  complete absence of dispersion,  and for the 
turbulence to be weak the opposite is true - the dispers ion must  be large.  In a pract ica l  situation, these two 
cases  simply cor respond  to the region of smal l  wave numbers (Bffrgers turbulence with an energy spec t rum 
Ek ~ k 2 [64]) and to the region of large wave numbers  (weak turbulence having the spec t rum E k ~ k -2/3 [67]). 
Thus,  even f rom this example it follows that in the general  case  wave turbulence must  be "multiphase" turbu-  
lence (i.e.,  it is a mixture of gases  - phases consist ing of different quasipart icles) .  The interaction between 
these "phases"  is most  substantial  in the region of t ransi t ional  scales  in k -space .  Such multiphase models 
were considered with application to sound [65] and Langmuir  [66] turbulences . t  

Let  us now discuss  the muttiphase turbulence that develops for  interaction of low-frequency and high- 
frequency waves (for example, ion-sound and Langmuir  waves in a plasma [66] or  internal and surface waves 
in the ocean) in grea te r  detail.  The interact ion of one-dimensional  waves can be descr ibed by the sys tem 

- -  2 i a  t + ~ a x x  - -  tap Iza -= - -  2 ~ ~1 a,.~., (IV.8) 
2 12 + ~ + ~2 n x x t ,  IZtt - -  Cs Igxx : 7 ] ( L t t  r lxxxx 

where fl cha rac te r i zes  the dispers ion of the hf waves; cop is their c r i t i ca l  f requency (see the dispersion 
charac te r i s t i c  in Fig.  46); 5 cha rac t e r i ze s  the dispers ion of the If waves; c s cha rac te r i zes  their velocity;  

*Unlike decay t r iplets ,  the phases of modes inside an explosion tr iplet  do not "jump" - the explosion tr iplet  
does not have internal degrees  of f reedom.  There fore ,  the derivation of the kinetic equation is based on the 
approximation of the randomness  of the phases of the triplet .  
t T h e  model for  turbulence in the fo rm of a mixture of gases "saws" and conventional quasipart ic les  proposed 
in [65] allowed splicing of the spectra for B{irgers and weak turbulences.  
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Fig .  46. D i spe r s ion  c h a r a c t e r i s t i c  
of hf and If no rma l  waves  in an 
LC line. 

_ _  T c 

Fig .  47. Equivalent  c i rcu i t  of a cel l .  

Fig.  48. Osc i l logram and evolution of the spec t r a  of the envelope 
waves:  a) soli ton (w/COp = 1.08, Aw/wp = 0.05); b) shock waves  
(co~COp = 1.04, A w / c o p  = 0.05); C) dynamic turbulence (co~cop = 1.36, 
Aco/cop = 0.05); d) per iodic  energy  exchange (co/cop = 1.13, A w / w p  = 
0.15). 
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v 1 and v 2 a r e  the v i s cos i t y  of the hf and I f waves  (for a p l a sma ,  v 1 s imula tes  the Landau damping of Lang-  
m u i r  waves) ;  y c h a r a c t e r i z e s  the magnitude of the coupling between hf  and I f  waves .  The s y s t e m  (IV.8) is  
usual ly  solved numer ica l ly .  We shal l  make  use  of its solution obtained as a r e su l t  of physics  exper imen t s  on 
the in te rac t ion  of hf  and I f  waves  in a one-d imens iona l  nonlinear  med ium - a line with nonlinear capac i tances  
(the equivalent  c i r cu i t  of a sect ion is d isplayed in Fig .  47). A semiinf in i te  "medium"  was inves t igated on whose 
boundary monochromat i c  hf  and If  waves  were  excited.  F o r  an identical  energy  of the hf  wave on the bound- 
a ry ,  four  qual i ta t ively d i f ferent  f o rms  of hf turbulence  develop as a function of its f requency (see Fig.  48): 
sol i tons ,  sawtooth waves ,  dynamic turbulence - an ensemble  of hf  waves  that  quas iper iodica l ly  exchange 
ene rgy  with each other ,  and a r e g i m e  with per iodic  exchange of energy  between sa te l l i t es  which develop as a 
r e s u l t  of modulat ion instabi l i ty  and the " c a r r i e r  ~ wave which is intense on the boundary.  In the exper iments  
that  were  p e r f o r m e d ,  s e v e r a l  tens of sa te l l i t e s  were  observed ;  the f i r s t  f o u r  or  five of them a re  shown in 
Fig.  48 as a function of x.  

Envelope sol i tons developed due to modulat ional  ins tabi l i ty  in the region of s t r o n g  d i spe r s ion  (W ~ Wp) 
fo r  low diss ipa t ion .  F igure  48a d isplays  an osc i l l og ram of envelope waves  in the f o r m  of a sequence of so l i -  
tons and shows the evolution of the i r  s p e c t r u m .  

F o r  a reduct ion of the f requency of the If wave incident on the boundary (to ~ COp), the sol i tons were  
r ep l aced  by waves  having a sawtooth shape (see Fig .  48b).* If hf waves  having a f requency lying within that 
reg ion  of the d i spe r s ion  curve  where  group synch ron i sm with If waves  is  sa t i s f ied  were  exci ted on the bound- 
a ry ,  then a dynamic - tu rbu lence  r eg i m e  was es tab l i shed  (Fig. 48b). In the absence  of ha rmon ic s  of the If 
waves ,  this r eg im e  went ove r  into a r igorous ly  per iodic  r e g i m e  - in Fig.  48d it is evident that  the sa te l l i t es  
s imul taneous ly  r e tu rn  the energy  to the init ial ly intense wave and a re  then intensif ied by this wave again.  

F o r  exci ta t ion of hf  waves  with a wide spec t rum on the boundary of the medium,  a mul t iphase - tu rbu lence  
r e g i m e  develops which cons i s ted  of the r e s u l t  of the in terac t ion  of the e l e m e n t a r y  "gases"  cons idered  above.  
The  p r e s e n c e  of complex  quas ipa r t i c l e s  of each kind in such turbulence was  identified accord ing  to the sp ec t r a .  
An ana lys i s  of the pa i r  in terac t ion  of d i f ferent  "phases"  demons t ra t ed  that quas i s ta t ionary  e l emen ta ry  r e g i m e s  
were  es tab l i shed  re la t ive ly  rapidly  and then slowly exchanged energy  with each other .  

In concluding the p r e s e n t  sect ion,  we note that,  r eg re t t ab ly ,  in p rac t i ce  all  r e su l t s  involving s t rong  wave 
turbulence were  obtained e i ther  by means  of numer i ca l  or  by means  of model  expe r imen t s .  This  is a s soc i a t ed  
both with the co lossa l  analyt ic  diff icult ies  of the p r o b l e m s  cons idered  and with the fact  that the i r  in tensive in-  
ves t iga t ion  is essen t ia l ly  only beginning. 
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W A V E  - - P A R T I C L E  I N T E R A C T I O N  I N  N O N E Q U I L I B R I U M  M E D I A  

V.  D .  S h a p i r o  a n d  V .  I .  S h e v c h e n k o  UDC 538.57 

I .  I N T R O D U C T I O N  

The f i r s t  p a r t  of the p r e s en t  cou r s e  of l ec tu res  was devoted to an invest igat ion of nonlinear  effects  which 
a r e  based  on the w a v e - w a v e  in terac t ion .  An impor tan t  f ea tu re  of p l a sma  turbulence,  which dist inguishes it 
f r o m  hydrodynamic  turbulence,  r e s i de s  in the fact  that in a p l a sma  the in terac t ion  of waves with resonance  
pa r t i c l e s  whose ve loc i t i e s  v a r e  re la ted  to the f requency w k and the wave vec to r  k of the wave by the condition 

w k = kv (plasma with no magnet ic  field), 
(1) 

w k = kllvlf + nw H (magnetical ly ac t ive  p l a sma ;  n= 0, • 1 . . . .  ), 

where  w H = eH0/mc is the cyc lo t ron  f requency,  plays an es sen t i a l  and s o m e t i m e s  even a dominant  ro le  along 
with the effects  resu l t ing  f r o m  w a v e - w a v e  interact ion.  In a nonequil ibr ium Maxwell ian p la sma ,  resonance  
wave - p a r t i c l e  in te rac t ion  leads to the development  of eo l l i s ion less  wave at tenuation - Landau damping.  Fo r  
a deviation of the dis t r ibut ion function of the resonance  pa r t i c l e s  f r o m  an equi l ibr ium dis t r ibut ion (a b e a m  in 
a p l a sma ,  t e m p e r a t u r e  an iso t ropy) ,  the s ame  mechan i sm of the in terac t ion  of waves  with pa r t i c l e s  leads  to 
the deve lopment  of an extensive  group of mic ro ins t ab i l i t i e s .  

As a r e su l t  of in te rac t ion  with waves ,  the dis t r ibut ion function in the region of r e sonance  ve loc i t i es  is 
de fo rmed  in such a way that  the exchange of ene rgy  between par t i c les  and waves  c e a s e s  (col l is ionless  r e l a x a -  
tion of the d is t r ibut ion  function). Two approaches  a r e  possible  through an invest igat ion of this p r o c e s s .  One 
of them,  which has  been  developed in the g r e a t e s t  detail ,  is based  on the use of the equations of quas i l inear  
theory  [1] and is appl icable  when a b road  wave packet  in which the phase "mixing" t ime t ~ 1 /Ak lv  - vgr l  (Ak 
is the width of the packet ;  vg r  is the group veloci ty)  is substant ia l ly  s h o r t e r  than the quas i l inea r  re laxa t ion  
t ime  of the d is t r ibut ion of the r e sonance  pa r t i c l e s  in te rac t ingwi th the  p l a s m a .  F o r  Langmui r  osc i l la t ions ,  this 
condition means  that the width of the wave packet  accord ing  to the phase ve loc i ty  subs tant ia l ly  exceeds  the 
ve loc i ty  with which the pa r t i c l e s  osc i l la te  in the potential  well  c rea ted  by the packet:  

Along with (2), it is n e c e s s a r y  in quas i l inear  theory for  the condition ensur ing  "col lec t iv iza t ion"  of the motion 
of r esonance  pa r t i c l e s  in the packet  to be  fulfiUed - the phase -ve loc i ty  dis tance between the individual h a r -  
monies  of the packet  mus t  be substant ia l ly  s m a l l e r  than the width of the potential  well  for  these harmonics :  

/ ( �9 
, . k ; ~ , (3) 

so  that condition (3) may  l ikewise be  wr i t ten  in t e r m s  of the spec t r a l  densi ty of the potent ial  in the f o r m  

~ ( ' k - )  << ( A  k, ?k '2)t;a.i (3') 

Under  these  condit ions,  the change in the d is t r ibut ion of the resonance  pa r t i c l e s  due to an individual harmonic  
of the packet  is slight,  while the joint act ion of many  harmonics  of the s p e c t r u m  leads to a slow veloci ty  dif-  
fusion of the r e sonance  pa r t i c l e s  which c e a s e s  when a "plateau" is f o rmed  o n t h e  dis t r ibut ion function. The 
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