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Acoustic Tomography at Basin
Scales and Clock Errors

Anisim A. Silivra, John L. Spiesberger, Anatoly L. Fabrikant, and Harley E. Hurlburt

Abstract—A basin-scale acoustic tomography simulation is
carried out for the northeast Pacific ocean to determine the
accuracy with which time must be kept at the sources when
clocks at the receivers are accurate. A sequential Kalman filter
is used to estimate sound-speed fluctuations and clock errors.
Sound-speed fluctuations in the simulated ocean are estimated
from an eddy-resolving hydrodynamic model of the Pacific forced
by realistic wind fields at daily resolution from 1981–1993. The
model output resembles features associated with El Ni ˜no and
the Southern Oscillation, as well as many other features of the
ocean’s circulation. Using a Rossby-wave resolving acoustic array
of four fixed sources and twenty drifting receivers, we find that
the percentage of the modeled ocean’s sound-speed variance
accounted for with tomography is 92% at 400-km resolution,
regardless of the accuracy of the clocks. Clocks which drift up
to hundreds of seconds of error or more for a year do not
degrade tomographic images of the model ocean. Tomographic
reconstructions of the sound-speed field are insensitive to clock
error primarily because of the wide variety of distances between
the receivers from each source. Every receiver “sees” the same
clock error from each source, regardless of section length, but
the sound-speed fluctuations in the modeled ocean cannot yield
travel times which lead to systematic changes in travel time that
are independent of section length. The Kalman filter is thus able
to map the sound-speed field accurately in the presence of large
errors at the source’s clocks.

Index Terms—Acoustic tomography, clocks, Kalman filtering.

I. INTRODUCTION

M UNK and Wunsch [1] suggested using the delays of
acoustic pulses between sources and receivers to re-

construct the sound-speed field in the ocean using tomographic
techniques. To do this, they stated that time must be maintained
to the order of 10 ms. Later, Munket al. [2, p. 173] state
that “travel times need to be measured with a precision of
a few milliseconds, corresponding to a few parts per million
over 1 Mm range.” To the best of our knowledge, there has
been no subsequent quantitative examination of this criterion.
Since clock errors at the acoustic source directly affect the
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arrival time at receivers, it seems obvious that large clock
errors can corrupt travel-time data to the extent of not being
able to accurately map the sound-speed field with tomography.
A one millisecond clock error is easy to maintain if the time
base for the clock is maintained via a facility on shore or
is in communication with satellites. However, when acoustic
sources are placed on autonomous subsurface moorings, one
relies on an onboard frequency standard to compute an accu-
rate time. To maintain a millisecond accuracy over the period
of a year requires a clock with a fractional frequency error
of about 10 or better. This clock accuracy is not easy to
achieve from an engineering point of view [2, p. 208]. With a
two-oscillator scheme, a low-power but inaccurate frequency
standard keeps time with its frequency error measured several
times per day by turning on an accurate but power-hungry
Rubidium frequency standard [3]. When a 10-W Rubidium is
powered for fifteen minutes four times a day during a year,
the required energy is about 310 J. This is comparable
to a standard alkaline battery pack containing 710 J, the
energy typically used for tomographic transmissions during a
year. The additional batteries required to maintain an accurate
time are expensive and add significantly to the weight of the
instruments to be moored. Paradoxically, simulations in this
paper show that the acoustic source’s clock may have errors
of hundreds of seconds or more and not affect the accuracy of
tomographic maps of the ocean’s large-scale structure. Ocean
acoustic tomography is not the only application which uses
independent clocks to measure the time delay between the
moments of pulse radiation and reception [4].

Clock errors occur due to a deviation of the frequency
standard used for timekeeping. Consequently, the process of
producing clock error may take on a deterministic rather than
random character. As a result, the clock error is a sum of a
relatively large systematic bias, which can slowly change with
time, and a relatively small random component [5, Fig. 6]. We
take this into account when we later formulate an approach
for modeling clock errors.

For underwater acoustic tomography, it is natural to include
clock errors as additional parameters to the set of parameters
to be estimated [6], [2]. In this case, clock errors are to be
estimated with a certain accuracy and are effectively subtracted
from the data so that the estimation of other model parameters
could be done using more realistic values from the data set.

II. DESCRIPTION OF AMODEL

A. Ocean Model

The region for the tomographic simulation has a southwest
coordinate at 20.5 N, 192.5 W and north-east coordinate
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Fig. 1. Region of the tomography simulations in the northeast Pacific.
Circles mark the positions of sources. Geodesic lines connect sources and
drifting receivers. The locations of drifting receivers are shown for day 110
of the model year 1985.

at 51.5 N, 239.5 W (Fig. 1). This is a subdomain of the
ocean model described later in this section. The tomographic
instruments include four fixed acoustic sources and twenty
drifting receivers with navigational accuracy of 10 m. The
location of drifting receivers for all moments of time for the
year of 1985, as well as sound-speed perturbations in the
ocean, are computed with the eddy-resolving hydrodynamic
Naval Research Laboratories (NRL) layered ocean model [7].
This model represents in a quasi-realistic way some of the
ocean variations due to El Niño and the Southern Oscillation,
which are a major part of the Pacific Ocean large-scale
variability. The model was used to successfully interpret many
features of multiscale ocean circulation including a Rossby
wave generated by the 1982–1983 El Niño [7], [8]. Modeled
travel times are overwhelmingly due to first-mode baroclinic
Rossby waves linked to El Ni˜no and the Southern Oscillation
[9]. The effects of eddies, currents, and other modeled features
contribute less than a percent of the total modeled variance in
travel time [9].

The NRL model includes six layers of constant density,
realistic bottom topography, and a horizontal grid resolution
of . Between 1981–1993, the model is forced by daily
wind products from the European Center for Medium Range
Weather Forecast (ECMWF) between 20S and 62 N in the
Pacific. See [9], [10] for detailed descriptions of this model.

In this paper, sound speed is computed as described in
[9]. Sound-speed perturbations are computed by assuming that
vertical displacements in the model’s layers lead to adiabatic
changes in the speed of sound.

The sound-speed perturbations in the model reach maximum
values in the main thermocline where the vertical profile of the
sound-speed is not-adiabatic due to heating from the surface
[11, Fig. 3]. Typical sound-speed variations are about 4 m/s
at 300 m depth. Below the main thermocline the sound-speed
profile is nearly adiabatic and vertical particle displacements
have little effect on sound speed.

B. Synthesis of Acoustic Travel Times

The data, , for the forward problem are the travel times,,
through the simulated sound-speed field minus travel times,,

through the reference sound-speed field. The reference sound-
speed field is constructed by computing sound-speeds with
Del Grosso’s algorithm [12] using temperature and salinity
versus depth from Levitus’s climatological database [13]. The
simulated sound-speed field is obtained by adding sound-speed
perturbations from the NRL model to the reference field.
Each datum, , is corrupted by adding a clock error,, and
pseudorandom noise , where is the standard deviation of
noise related to this measurement, andis the pseudorandom
number with standard deviation 1. Thus, we have

(1)

The noise variance has four contributions. They are:

1) precision of measuring the arrival time of a pulse due to
the signal-to-noise ratio and the bandwidth of the pulse;

2) imperfect corrections to the travel time biases due to
eddies;

3) imperfect corrections to the travel time biases due to
internal waves;

4) unmodeled variations at small scales in the NRL ocean
model.

At distances of thousands of kilometers, these produce errors
of the order 10 ms. A complete description of the simulated
noise is given by [11, Eq. (11)].

We do not solve the three-dimensional (3-D) forward prob-
lem, but replace it with a computationally more efficient two-
dimensional (2-D) sound propagation problem on a horizontal
plane. This approximation is excellent and is based on our
finding that modeled acoustic travel times are dominated by
first-baroclinic-mode Rossby waves [9], [11].

III. K ALMAN FILTER

The Global Acoustic Mapping of Ocean Temperature
(GAMOT) program [14] has developed a procedure for
sequentially assimilating acoustic tomography data [11]. A
sequential Kalman filter [15], [16] is used to estimate the
sound-speed field in the model, errors in the positions of the
acoustic sources and receivers, and errors in the timekeeping
at the acoustic sources. Reference [11] gives a detailed
description of this Kalman filter, except for the handling of
clock-error parameters. Handling of the clock-error parameter
will be discussed later in this section. This filter has been
previously used to demonstrate that modeled Rossby waves
can be well resolved in the northeast Pacific using sources and
receivers whose measured positions have errors of a kilometer
[11].

A. Summary of the Kalman Filter Implementation

The Kalman filter gives us a least-square estimation of
model parameters on the basis of simulated data anda pri-
ori information on the scales of the modeled parameters.
The modeled 2-D sound-speed field is represented by a 2-D
Fourier decomposition which provides approximately 100-km
resolution. A total of 1457 harmonics are required to obtain
this resolution. We include clock errors and source/receiver
position errors in the vector of model parameters,. Thus,
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the model consists of 1457 amplitudes of Fourier harmonics,
72 parameters accounting for source/receiver position errors,
and four parameters for clock errors, one for each source, for
a total of 1533 parameters.

Using a linear approach, we assume that data,, and model
parameters, , satisfy a relation

(2)

where is a matrix of model parameter’s weights, is a
vector of noise with zero mean and variance. The least-
square estimation of the model parameters is given by

(3)

where are updated and previous value of model
parameters, so that is an innovation vector. The
Kalman gain matrix is

where is a positive definite square matrix of model
parameter covariances just prior to data assimilation. The
identity matrix is . The error covariance matrix just after
data assimilation is

(4)

Data are simulated using an acoustic propagation model and
subsequently assimilated at about 15-day intervals. Thus, we
estimate the state of the ocean at the particular moment of
time allowing for the previous estimation of model parameters
and their covariances. It should be noted that the previous
time-step estimation is transitioned before combining with the
current data. For the ocean model parameters, we use modified
persistence transitioning [18] which provides for exponential
decay of ocean model parameters and corresponding covari-
ances toward theira priori values. Time constants for all ocean
harmonics are calculated from the NRL ocean model. Typical
values of the time constants are within the limits of 400 days
for the long-wave perturbations to 30 days for the short-wave
perturbations.

The sequential Kalman filter is run in the forward and
backward time directions. Estimates of model parameters and
their errors are obtained by optimally combining the results of
the forward and backward runs as described elsewhere [11].

B. Model Parameters for Clock Errors

For basin scale tomography, we can use either a “good”
clock, which is characterized by a fractional frequency error
of , or a “bad” clock with or more.
This means that “good” clocks may deviate from geophysical
time about 0.0003 s per year, while “bad” clocks may deviate
by as much as 0.3 s per year. Hereafter, it is assumed that the
maximum growth rate of clock error,, is known. The initial
offset of a clock which might occur after deployment could be
also assumed to be known, for example, from a measurement
from a nearby ship [17]. Further, we assume that the standard
deviation of the initial clock offset is .

The clock error for each clock was simulated as a polyno-
mial expression

(5)

where are constants,is time elapsed after deployment, and
is a random number with a standard deviation of unity.
The coefficients in (5) are chosen so that at the

clock error does not exceed the initial value (in our
case 1 ms), corresponding to the offset of clocks
after the deployment, and further remained within the interval

. At the same time, the growth rate of
clock error must not exceed , where is the fractional
frequency error of the clock. The coefficient, describing the
random part of the clock error, is chosen to be much smaller
than . And, since the simulated clock error for must
be consistent with thea priori standard deviation of the clock
error , the coefficients satisfy the relation

(6)

Simulated clock errors are shown in Fig. 2.
Let be a model parameter which corresponds to the

clock error. We need to specify how to handle this parameter
and its covariance between time steps. We assume that it is
appropriate to estimate the clock error between time steps as

(7)

i.e., the modeled error at timeis the same as at time ,
where is the duration of the time step.

Since a clock error cannot change more than
between time steps, the transition rule (7) means that possible
inaccuracy of transitioning does not exceed . This
value could be used as an estimate of noise introduced by
the transition rule (7). But, taking into account a deterministic
character of this inaccuracy, we prefer to choose the transition
for the variance of a clock error in the form

(8)

where is the estimate of the standard deviation of the
clock error at the time moment is a priori known growth
rate for the clock error. It should be noted that in this way
we overestimate the variance of the clock error rather than
underestimate it.

IV. TOMOGRAPHY SIMULATIONS

In all cases in this paper, the model fits the simulated data
within two standard deviations. This means that the model is
consistent with the simulated data.

Curves 1–4 in Fig. 2 show simulations of clock errors
produced by “bad” clocks with fractional frequency errors of

. Similar errors are observed in clocks used in to-
mography experiments [5]. Modeled sound-speed fluctuations
for a section yield travel-time changes of about 0.1 s (curve
5, Fig. 2). Travel times come in sooner than predicted for the
reference ocean, indicating the average speed of sound is faster
than the reference along this section. When clock errors are
added, the arrival times of sound come in later than given by
the reference travel times (curve 6, Fig. 2). Without modeling
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Fig. 2. Simulated clock errors at sources 1–4 having a fractional frequency
error of10�8 during a model year. The simulated acoustic travel-time changes
for a 2500-km section are shown without clock error (curve 5) and with clock
error (curve 6).

clock errors, one might incorrectly conclude the average speed
of sound is slower than the reference speeds along the section.
It would seem that tomographic reconstructions with such
corrupted data would yield a very inaccurate tomography
result. Nevertheless, the sequential estimation implemented by
the Kalman filter is able to account for the clock error and
effectively correct the data.

The assimilation of the data for each time step results in
the decrease of variances of all parameters including clock-
error variances, while between time steps they are allowed to
grow due to the transition rules specified above. Eventually,
we achieve a dynamically steady state for which an increase
of clock-error variances between time steps is compensated by
a decrease of clock-error variances due to assimilation of data.

In Fig. 3, we see that a dynamically steady state is achieved
with regard to the clock errors in a few months. The standard
deviation of a clock-error estimation is approximately
0.03 s for the major part of the year for which the tomography
is done. The estimates of clock errors themselves are shown
in Fig. 4. In comparison, the clocks themselves are about 0.3
s off at year-end.

We find that large-scale tomographic reconstructions of the
sound-speed field are insensitive to the clock errors at the
sources (Fig. 5). The tomographic reconstructions are made
for clocks having fractional frequency errors of 10
10 , and 10 . These errors lead to clock offsets of about
0.0003, 0.3, and 300 s, respectively, after a year has elapsed.

The quality of a tomographic reconstruction is estimated
by dividing the simulation domain in Fig. 5 into 96 squares
with sides 4 latitude by 4 longitude. From these, a subset
of 54 squares is chosen. The subset excludes squares on the
perimeter and on the second from the most right-hand column
of the simulation domain so as to avoid areas containing
few tomographic sections. In each square of the subdomain,
the tomographically estimated sound-speed field is spatially
averaged. The variance of this average at some particular
time step for the th square is denoted by . This

Fig. 3. The Kalman filter’s estimate of the standard deviation of clock error
as a function of the day throughout a model year. Errors decrease following
data assimilation at about 15-day intervals and then grow until the next data
are assimilated. This leads to the characteristic sawtooth pattern of parameter
errors associated with sequential Kalman filters.

is compared to thea priori variance of the sound-speed
field at 300-m depth denoted by . This variance is
obtained from thea priori covariances used by the Kalman
filter [11, Section IV]. The percentage of sound-speed variance
accounted for with the data in squareis

(9)

If equals 95%, then tomographic reconstructions account
for 95% of the variance of the sound-speed field in theth
square. The average value of in the subdomain is

(10)

The value of is 91.2%, 90.9%, and 90.7% for clocks
having fractional frequency errors of 10 10 ,
and 10 , respectively. Thus, the quality of the tomographic
reconstruction is insensitive to the error of the clock used to
set the transmission time of the acoustic signal.

V. INTERPRETATION

The paradox that the simulated sound-speed field can be
mapped well despite huge errors in the source’s clocks requires
an explanation. Suppose the sound-speed field is simplified so
as to have only a fundamental harmonic, so there is only one
parameter to estimate for the sound-speed field. That parameter
gives the speed of sound everywhere in space.

Consider case 1, where two receivers are about equidistant
from a source (Fig. 6). If there is an error in the source’s clock,
both receivers register the same offset due to this error. The
actual sound-speed field would also affect the arrival times
at the two receivers in identical ways. Since the clock errors
and the corrections to the constant reference sound-speed field
yield the same kind of arrival time changes at both receivers,
it is difficult in this case to estimate the sound-speed field
accurately.
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Fig. 4. Simulated clock errors with fractional frequency errors of10
�8 for four sources (light solid line) compared with the Kalman filter’s estimates

of clock errors (dark solid lines) and the errors of the clock errors (dotted lines). Errors indicate two standard deviations. The simulated clock errors
are the same as shown in Fig. 2.

In case 2, one receiver is much closer to the source than the
other. The error in the clock affects the arrival times at both
receivers by the same amount. However, the unknown constant
sound-speed perturbation affects the arrival times at the two
receivers differently. If the constant sound-speed perturbation
is , then the travel-time changes at receivers one and two
are and , respectively. Here, the reference
speed of sound is . These perturbations are different because

is quite different than . In this case, we expect to be able
to untangle the clock error from the sound-speed perturbation
of interest. When cases 1 and 2 are modeled analytically, these
conclusions are verified (see the Appendix).

Case 2 is very much like the simulations shown in this paper.
The receivers have quite different distances from the source.
The arrival times from the source are the same due to clock
errors, but are different due to sound-speed fluctuations. Since
only the large-scale perturbations in the modeled ocean affect
travel-time changes significantly [11], [9], our model ocean is
somewhat like the simplified case considered above, i.e., only
the fundamental harmonic affects the acoustic travel times.

APPENDIX

TOMOGRAPHY AND RECEIVER SECTION LENGTH

Assume that the model consists of two parameters: the
fundamental harmonic for the sound-speed perturbation,,
and the clock error, . The a priori standard deviations of
these parameters are and , respectively. The distances
between the source and the two receivers areand

respectively, and the reference speed of sound is. The data
are related to the model using (2) where

and

The data from receivers one and two are then

where and denote the true values for the sound-speed
perturbation and clock error, respectively. We now assume that
the effects of the sound-speed perturbation and the clock error
contribute to the travel-time data at each receiver such that the
geometric mean of the effects of the sound-speed perturbation
on travel times equals the effects of the clock error on the
travel times. Thus

In all cases below, we assume a high signal-to-noise ratio.
We use (3) to estimate the model parameter vector with

. We also use (4) to estimate the model-covariance
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Fig. 5. The top panels indicate sound-speed perturbations from the NRL model at 100- and 400-km resolution in the dashed model domain shown in
Fig. 1. The bright red region is the modeled Rossby wave in 1985. The three lower rows show tomographic reconstructions of the sound-speed field
for four sources and twenty drifting receivers on day 110 in 1985, for the indicated fractional frequency errors of clocks at the acoustic sources. After
a year, fractional frequency errors of 10�11; 10�8, and 10�5, lead to clock errors of about 0.0003, 0.3, and 300 s, respectively. The tomographic
reconstructions are insensitive to clock errors.

matrix, , following assimilation of data. Thea priori
error-covariance matrix is

Case 1: The distances from the source to each receiver are
equal in this case, so . After computing the Kalman
gain matrix, the model parameters have the solution

(A1)

(A2)

The error-covariance matrix for these model parameters is

with variances of model parameters being half of their initial
values. In this case, errors in the clock significantly degrade
the accuracy with which the sound-speed and clock-error
parameters are estimated.

Case 2: In this case, receiver 1 is much closer to the source
than receiver 2, so we have . The model parameters
have the solution

(A3)

(A4)
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Fig. 6. In case 1, two receivers are about the same distance from an acoustic
source. In case 2, two receivers have greatly different distances from the
acoustic source.

The error-covariance matrix for these model parameters is

Since , the covariances of the updated model
parameters are much less than theira priori values. The
Kalman filter obtains accurate answers for both the sound-
speed perturbation and the correction to the clock.
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