
SUPERREFLECTION OF WAVES IN HYDRODYNAMIC FLOWS 

A. L. Fabrikant UDC 533.9 

The amplification mechanism of various type waves in hydrodynamics is analyzed 
for reflection from planar and cylindrical tangential discontinuities. The 
problem of wave momentum and energy in a medium is discussed. The amplifica- 
tion is related to the presence of negative energy waves. 

I. INTRODUCTION. WAVE ENERGY AND MOMENTUM IN A MEDIUM 

The study of various type wave propagation in hydrodynamic flows requires, firstly, the 
explanation of physical mechanisms of the "wave-flow" interaction: amplification, absorp- 
tion, and scattering of waves in hydrodynamics. These problems refer not only to hydrodynam- 
ic systems; they are also generated, in particular, in the study of electromagnetic effects, 
in electrodynamics of continuous me~!ia [i], in plasma theory [2], and are, essentially, gen- 
eral problems of physics of nonequ~ibrium media. Qualitative understanding of the interac- 
tion mechanisms of waves with a moving medium is necessary for developing instability theor- 
ies [3, 4], the study of nonlinear effects in nonequilibrium media [5], etc. 

In the present study we consider various aspects of one of the most effective mechanisms 
of wave amplification and absorption in a nonuniformly moving medium, related to the presence 
of negative energy waves and the change in sign of dissipation in a hydrodynamic flow. Un- 
like the well-known resonance interaction mechanism of waves with synchronous frequencies in 
the critical layers [4, 6], here th~ whole flow participates in the interaction, and the ef- 
fect is independent of the details of the velocity distribution in the flow. Therefore, the 
features of this mechanism are conveniently investigated on the example of simplest hydro- 
dynamic flows: tangential discontinuity (TD) and other flows with piecewise constant vorti- 
city, where the effect occurs in pure form and admits analytic study. 

The law of wave energy conservation is widely used in flows for the interpretation of 
wave theory results. The concept of wave energy of a process in a continuous medium is far 
from trivial. Linearizing the original equations of motion, one can obtain conservation laws 
related to the steady state and homogeneity of the unperturbed medium. The values of ~ and 
P, conserved for a monochromatic wave exp(-i~t + i~r), and expressed in terms of the wave 
action Q [7] (the analog of the quasiparticle number in quantum field theory): P=~Q. 
are usually called the wave energy and momentum densities. However, considering the energy 
and momentum densities in their primary sense (conserving quantities related to the indepen- 
dence of the laws of motion of time and place), we must average the full expressions for 
energy and momentum, following from the original (nonlinear) system of equations over the 
wave phase, extracting the quadratic part in the amplitude due to the wave. In this case the 
quadratic terms, which are neglected in linearizing the original system, can, generally speak- 
ing, provide a contribution comparable to the quantities e and P. The motions corresponding 
to these terms have the meaning of induced wave flows. The problem of energy and momentum 
of waves, with account of mean motions induced by waves, was discussed multiple times in 
acoustics, hydrodynamics [8], and electrodynamics of continuous media [i, 9]. 

If the unperturbed medium is in rest, then the induced wave flow, whose velocity is 
quadratic in amplitude, obviously provides no contribution to the energy. As to the molten ~ 
tum of wave motion, it can be conveniently separated into the quantity P, obtained within 
the linearized approximation ("pseudomomentum" [i0]), and the momentum of the induced wave 
flow. The characteristic features of these two components can be verified on the example of 
gravity waves on the surface of deep water. 

Linearizing the two-dimensional boundary-value problem for the potential and the sur- 
face response q [ii], 
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Fig. i. Mean induced flow of a 
train of surface gravity waves. 

A~ = O, ~o~ Y= q' (I) 

+g~+.(v~V =0 
2 

one easily obtains a solution in the form ~-----~0exp (--i~t+ikx~ ]kly ) under the condition 
w 2 = glkl. If there is no induced mean flow (<V> = 0), then the mean horizontal Lagrange 
particle velocity (the Stokes drift) is 

Ou ~__u\= k <u ~ + v~ > (2) <x L>=<u>+<(~v)u>= ~-~x+~ ~y /  = 

where V = (u, v) = V~, and ~ = (~, 4) is the displacement of medium particles. The mean 
Lagrangian particle velocity decreases with depth as ~ exp(21kly), and determines the hori- 
zontal mass transport: 

0 

Sm = P <U~> dy = 2-~ <u. (0)> = p<u (01 ~>. (3) 

The same mass flow can also be obtained in the Euler description, taking into account mass 

transfer between peaks and troughs of waves: Sm=<p~udy>=p<u(O)N>. 

The Stokes drift is related uniquely to the wave momentum density: 

0 o 

- -~. (4) 

For the mean flow, slowly varying within the scale of wave oscillations, within second 
order in amplitude one can obtain from (i) the boundary-value problem [12] 

.h or a ( r  (5) 
Oy =-O'-x n Ox]' 

where # and h are the mean potential and the surface response. Taking into account that the 
wave group velocity is small in comparison with the phase velocity of long-wave perturbations, 
having the scale of the mean flow, we can neglect time derivatives. As a result we obtain 
the quasistatic problem of flow under the moving distribution of mass sources on the surface 
y = 0. Obviously, the mass source is the gradient of mass flow Sm, related to the Stokes 
drift. [For a packet of surface waves the pattern of line current is generated, which is 
easily found in this approximation, using the analogy with electrostatics: It coincides 
with the pattern of force lines of charges on the surfnce y = 0 (see Fig. i)]. 

It is easily shown that in each cross section x = x 0 the wave momentum P, related to 
the Stokes drift, is exactly compensated by the momentum of the induced wave flow. Indeed, 
from (5) we have in the quasistatic approximation 

0 

The first term in the square brackets provides the mass flux in the induced flow through the 
cross section x = const, and the second term provides the mass flux of the Stok@s drift. 
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Fig. 2. Wave reflection from a 
tangential discontinuity. ~0, ~r 
and kt are the wave vectors of 
the incident, reflected, and 
transmitted waves. 

A similar study was also performed for other types of waves [i0]. It must be stressed, 
however, that for processes of wave emission, absorption, and scattering, wave propagation 
in inhomogeneous media and other processes, for whose description the linear approximation 
is suitable (and only these problems are considered below), the induced wave flow, being a 
nonlinear effect, can simply be ignored, assuming that the wave momentum and energy in the 
resting medium are related by P~(k /~)e. In a moving medium, then, using the Laplace 
transformation, we obtain 

e . =  sol-{ - P U  -~ % ~ , ( 7 )  
|  

where U is the velocity of motion of the medium, and ~0 is the energy density in the refer- 
ence system moving with the medium. 

It is precisely in this sense that we perceive the wave energy, considering a wave 
with negative energy. This description, using, in fact, the concept of wave action and the 
pseudoenergy and pseudomomentum introduced in [i0], is closed and compatible within the 
linear theory. In this case the conservation of true energy and momentum can be generated 
by nonlinear emission effects of long-wave perturbations [i0, 12] (with a wave train scale), 
which must be the subject of a separate study. 

2. SUPERREFLECTION 

2.1. Miles-Ribner Problem. Sound in a Moving Medium 

The tangential discontinuity (TD) is the simplest hydrodynamic flow capable of amplify- 
ing waves reflected from it (Fig. 2). This effect (superreflection) was first noted for 
sound incident on a TD [13, 14], and was then also treated for other types of waves: inter- 
nal gravity [15], electromagnetic [16], etc. 

We discuss in detail the simple problem of reflection of a monochromatic wave exp(-iwt + 
ikx) from a TD. Matching the solutions for the potential, the pressure p, and the nontrivial 
particle displacement ~ (in the y direction) in resting (I) and moving (2) media, 

~l =eZqtY 4- ]~e-iqlY, p~ ~ i m o ~ ,  r. 1 = -  - -  

?z = Tetq2 y, Pz = i(~ - -  kU)  o?z, ~2 - -  

q' ( e lq ,  - -  Re- tq ly ) ,  
O~ 

q~. Te+~<_,;, 
~, - -  k U  

(8) 

by means of the boundary conditions [Pl - P2]y=0 = 0, [~l - ~2]y=0 = 0 we find the reflection 
and transmission coefficients 

R =  q l / ~ Z - - q z / ( o - - k U ) Z  T= 2 q ~ / [ o ) ( o - - k U ) ]  
q i / ~  z + q z / ( o - - k U )  a ' q l / ~  z + q a / ( ~ - - k U )  z ' ( 9 )  

w h e r e  q l  = [ ~ 2 / c a  - k ~ ]  1 / 2 ,  q2  = [ ( ~ -  k U ) 2 / c a  - k a ]  1 / 2 ,  a n d  c i s  t h e  s p e e d  o f  s o u n d .  T h e  
sign of the vertical component q2 of the wave vector in a moving medium is determined by 
the emission condition Vg r y > 0, which can be obtained by solving the initial problem [17]. 
It follows from the dispersion equation (m - kU) 2 = c2(k 2 + q2 2) that: Vg ry ~ 3m/3q= = 
c2q2/(~ - kU). For m - kU < 0 the radiation condition requires to select the branch q2 < 0. 
In this case the reflected wave is amplified: IRI > i. 

The interpretation of the superreflection effect is related to the explanation of the 
sign of the transmitted wave energy. Consider initially the momentum density of a monochro- 
matic sound wave in a resting medium. 
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Different regimes of sound reflection from 
a tangentia ! discontinuity. The following regions 
of incidence angles are shown: I) normal reflection; 
2) total reflection; 3) superreflection. 

Assuming that the mean Euler velocity is <V> = 0 (no induced mean flows), we obtain the 
mean momentum density 

P = (1 /2)  R e g v * ,  ( i 0 )  

where 0 and ~ are the density oscillation amplitude and the velocity, calculated within the 
linear problem, and e0 =(I/2)[(PJgl 2/2) + (JPI2/2pc2)] = (P~2/2c2)J~ j2 is the mean energy 
density (the equality of the mean potential and kinetic sound energy is taken into account) 
[II]. We note that the particle momentum here, as also for surface waves, is related to the 
particle drift (the mean Lagrangian velocity): 

1 p'vl ~- 
P = p <VL> = i -o  R e [ ( ~ * i k ) v l  ---- ( l l )  

' 2 to Z 

In a moving medium, taking into account that the pressure amplitude is independent of the 
reference system, we obtain from (7) the following energy density 

f 

t P l ~  ~ (~ - ku) lvl ~- ( 1 2 )  
m - -  k U  2pc 2 2c" 

For w - kU < 0 the energy density is negative. The vertical component of the energy flow 
density is Sy = Vgrye = (pm/2)q21~l 2. For q2 < 0 the energy flux of the transmitted wave 
is directed toward the discontinuity: Sy < 0. Thus, amplification occurs due to energy 
flux from the moving medium. In this case a negative energy wave emerges from the moving 
medium. The energy conservation law qz(l - IRI 2) = q21TI 2 can be derived directly from ex- 
pression (9). 

2.2. Resonances of Supersonic Flow. Consider the various reflection regimes depending 
on the incidence angle e and the Mach number M = U/c. Representing the wave vector of the 
incident wave in the form k0 = (k, q) = (msin e/c, ~ cos e/c), we rewrite (9) in the form 

/ ~ :  COSO--  

cos 0 + 

T 
cos 0 + 

Thr.ee different reflection regimes are 

i) normal reflection (q2 > 0, IRI 

[ 1 - -  s in  z 0 ( 1 - -  34 s in  0) -2]  1/2 

[ 1 - -  s in  2 0 ( 1 - -  34 s in  O)-a] ,/z 

2cos 0 ( I - - M  s in  0) -1 

[ 1 - -  s in  = @ ( 1 - -  34 s in  0) -2]  1/2 

p o s s i b l e  ( s e e  F i g .  3 ) :  

< 1 )  f o r  s i n e  < (M + . l ) - l ;  

(13) 

2) total reflection (Req2 = 0, IRI = i) for (M + i) -l ~ sine ~ 1 if M ~ 2, and for 
(M + 1) -I ~ sine ~ (M - 1) -I if M > 2; 

3) superreflection (q2 < 0, IRI > I) for M > 2 and sin0 > (M - I) -l 

In the latter case there exists a resonance incidence angle @0 = arcsin(2/M), for which 
IRI = ~. Under this angle we have spontaneous Cherenkov radiation of a vortex sheet, moving 
with velocity U/2 [13, 14]. A wave of negative energy is emitted during the process of spon- 
taneous emission in the moving medium, and a wave of positive energy - in the resting one. 
TD oscillations areneither damped nor amplified, and the sound energy emitted in the resting 
medium is drawn from the whole moving medium. 
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Fig. 4. The integration 
contour in the complex k- 
plane. 

For M ~ 2s the TD becomes stable [Ii], and the Kelvin-Helmholtz surface modes trans- 
form into running modes over the wave discontinuity with a phase velocity (relative to the 
vortex sheet) of V = +c[l + (M2/4) - s + M2] I/2. Since V + (U/2) > c, Vavilov-Cherenkov 
radiation must be generated [i]. Perturbations traveling over the TD emit sound at angles 

81,2, for which 

" _ = 4 J (14) 

The presence of negative energy waves in a supersonic TD can lead to various dissipative 
instabilities. We also note that the presence of a boundary supplements the acoustic inverse 
relation to TD, amplifying the reflected sound, and, obviously, rendering the flow unstable. 
An instability of this type was found in supersonic boundary layers [4]. 

2.3. Discontinuity Excitation by the Incident Wave. Considering planar monochromatic 
waves, we have assumed that sound and the eigenoscillations of discontinuity are linearly in- 
dependent modes. At the same time sound waves from a real source, possessing finite sizes 
and finite duration, excite discontinuity instability. Consider here radiation of a mono- 
chromatic point source of unit mass at distance h from the TD [18].* The wave equations in 
the resting and moving media are, respectively, 

Ao;,+ c, rp,=~(x,v+h), a ~ - -  ~ -i~ ~ Uox) " ~  

Taking i n t o  account  the  boundary c o n d i t i o n s  on the  TD, one e a s i l y  o b t a i n s  a s o l u t i o n  by the  
Fourier transform in the coordinate x: 

~ = ? ~  ~ 2q,--fdke~kx-iq'~'-h)[~(~'k) , (16) 

where ~0 is the source field in an unbounded resting medium, and R(w, k) is defined by ex- 
pression (9). 

The integration contour in the complex k-plane must be selected by using the causality 
principle. Keeping in mind the solution of the initial problem by the Laplace method, we 
must consider complex to values corresponding to growing waves, i.e., located sufficiently 
far in the upper ~ half-plane. In this case the poles of the reflection coefficient R(w, k) 
are located in the upper complex k half-plane. In this case the integration can be carried 
out over the real k axis. In order to continue analytically the solution obtained to real 
w, it is necessary to deform the integration path in the complex k-plane, supplementing the 
real axis by loops surrounding the poles ki in the lower half-plane, and by arcs surrounding 
the poles ks on the real axis (Fig. 4). 

The poles ki correspond to eigenoscillations of the discontinuity, increasing along the 
x axis. Thus, the full solution of the point source problem includes not only traveling 
sound waves [obtained by integration over the real axis in (16)],'but also a surface wave at 
the discontinuity increasing along x. 

The solution thus obtained makes it possible to establish the validity limits of the 
results, related to reflection of monochromatic plane waves from a TD instability. Indeed, 
upon moving away from the point source (h + ~) an incident cylindrical wave tends to a 
planar wave near the given direction. In this case the effectiveness of exciting a surface 
wave decreases exponentially. We also note that the lines of equal amplitude of the surface 
wave are rays with slope tg@c = Imq/Imk. For incidence angles 8 > 8c the solution in the 

*The interesting features generated during TD excitation by a cylindrical pulse were treated 
in [19]. 
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form of transmitted and reflected waves loses its meaning, since it exists on the background 
of an exponentially increasing solution of the surface wave type. At the same time, for ~ < 
%c the surface wave can be neglected. At low velocities (M + 0) we have ~c = 45~ while for 
M + 2~ the growing waves vanish and 8c ~ 90 ~ 

The solution (16) makes it possible to calculate the acoustic impedance of source emis- 
sion near the TD: ra = -Im[p~(x = 0, y = -h)]. For subcritical discontinuities at M ~ 0 
we haveq~,2 =ik, and the reflection coefficient has a simple form: R = [(~ - kU) 2 - ~2]/ 
[(~ - kU) = + w2]. In this case the integral over the real axis in (16) obviously does not 
contribute to ra. The radiation impedance is determined by the excited surface wave, corre- 
sponding to a contour integral around the poles ki = (i - i)m/U. As a result we have 

I p~e_~hl~si n (2~h ~)  4 ~ u + ~' (17) 

The q u a n t i t y  r a  depends on t h e  p a r a m e t e r  ~h/U, and can change  s i g n .  The l a t t e r  f a c t  makes 
i t  p o s s i b l e  t o  e x p l a i n  t he  mechanism of  s e l f - e x c i t a t i o n  of  s e v e r a l  t y p e s  o f  s p e c t r a  [6,  20]~ 
In  f a c t ,  i f  as a s o u r c e  mass one t a k e s ,  f o r  example ,  a He tmhol tz  r e s o n a t o r ,  f o r  ra  < 0 the  
o s c i l l a t i o n s  in t h e  r e s o n a t o r  a r e  a m p l i f i e d .  

We n o t e  t h a t  f o r  s e l f - e x c i t a t i o n  o f  a r e s o n a t o r  t h e  i m p o r t a n t  f e a t u r e  i s  no t  so much 
t h e  f low i n s t a b i l i t y ,  bu~ t h e  p r e s e n c e  o f  s e l f - o s c i l l a t i o n s  o f  t he  f l ow ,  i t s  i n e r t i a l  p rop -  
e r t y .  In  p a r t i c u l a r ,  t h e  s o u r c e  can have a n e g a t i v e  r a d i a t i o n  impedance,  e x c i t e d  by n e u t r a l -  
l y  s t a b l e  o s c i l l a t i o n s  in t h e  f low due t o  t h e  deve lopment  of  t h e s e  o s c i l l a t i o n s  a t  t he  l e n g t h  
o f  f l i g h t  nea r  t h e  s o u r c e  [ 2 0 ] .  This  mechanism i s  s i m i l a r  to  t h e  s e l f - e x c i t a t i o n  mechanism 
of  e l e c t r o n  SHF d e v i c e s ,  where t h e  evo lvemen t  o f  p e r t u r b a t i o n s  in the  e l e c t r o n  f low a t  t he  
length of flight h is determined by the parameter ~h/U and leads to electron clustering. In 
the presence of these unstable oscillation modes of the electron flow the buildup increment 
of the electromagnetic resonator is determined, as in hydrodynamics, by an integral in the 
complex wave number plane over a contour, surrounding the poles corresponding to waves in- 
creasing with the flow from below [21]. 

2.4. Superreflection of Internal Gravity Waves. The nature of reflection of disper- 
sionless sound waves is determined only by the incidence angle. Below we consider waves with 
dispersion, whose reflection depends on their frequency. Interesting and practically impor- 
tant examples are internal gravity waves (IGW), propagating in a stratified medium in a 
gravity field. 

The equations for two-dimensional oscillations of a layered, incompressible medium are 
[ i i ,  22] 

h + l  ap o ' ~+!ap RP +-=o,p 
=" do 3u O= 
p ~ - - - - '  = 0 ,  + m =0. 

(18) 

As a rule, for IGW one can use the Boussinesq approximation, corresponding to the limit dp/ 
dy + 0, g ~ =, N E [(--g/p)(dp/dy)] I/2 = const. In this case the density variation at a 
wavelength scale becomes unimportant, but remains an increasing force. In this approxima- 
tion the derivative dp/dy appears only in the Brent-Vaisala frequency N, while in the coef- 
ficients of the equations one can put p = const. From (18) one then obtains a dispersion 
equation for IGW and their group velocity Vgr: 

A n ~' Nq  M cos 8 
~ 2 =  _ _  N2sln ~e, ~gr=(k2+q~)~2(q,--k) - -  (cos 0, --  stn e} ~ g r = 0  (19)  

k 2 - ~ - q  2 kn  ' " 

We note that only IGW with ~ ~ N can propagate. 

Consider IGW reflection from a TD in a medium with N = const. Matching the solutions 
Pl = exp(iqly) + Rexp(-iqly) and p2 = Texp(iq2y) by means of the boundary conditions at 
the TD, we obtain 

= ql (N'Z_ (,~2)-,- q2[N z - -  ( ( o -  kU)2]  - i  

qt (N z -  o)2) -t  q- q~[N 2 -- (~ -- k~)Z] -t  ' 
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r = , (20) 

where qx = -k/N2/~2 - i, q2 = -k/N2/( ~ - kO)2 - i (it is taken into account that for IGW 
qlVKry < 0). The energy conservation law following from (20) ql(N 2 - ~2)-:(i - IRI 2) = 

q2[~ ~ - (~ - kU)2]-IITI 2 is also easily obtained from expression (19) for vgry and the 
equation for the IGW energy density in a resting medium [22] 

~<u 2 + v:> N ~ <~2> :V ~ k~ 
% - + !~t ~ (21)  

2 2 ~ {N  ~ - -  ~) 

with account of Eq. (7) and the relationship Sy = Vgr y~. 

'V2k2 q > 0  w i th  ~ - The radiation condition in a moving medium Vgrv=-- (k2 + q2)2 m--kU 

kU < 0 forces to select the branch q2 > 0. Taking into account that q~ < 0, we obtain in 
this case IRI > I. As follows from (7), the transmitted wave carries negative energy in 
this case. 

The classification of the various reflection regimes is conveniently carried out in 
terms of the dimensionless parameter s = kU/m = (k0U/N)(sinS/Isin8 I), in terms of which 
are expressed the wave characteristics in a moving medium and the coefficients R, T: 

k]/1 - -  sina 0 ( l - - s )  2 
o ~ - - k U - ~ - N [ s i n O ]  ( l - - s ) ,  q2------ 

]sinO t ( l - - s )  

NsinO ( l_s )z} ,  l - . s i n z O ( l _ s } ~  , Vgr ~ ~ k:-'---7-- 
(22)  

R ( l - - s )  g . l - - s i n a 0  ( l - - s )  2 - cos0 

( l - - s )  ~ 1 - -  sin20 ( l - - s )  2 + cos0 

T -- - -  2 ( l - - s )  ~ 1 - -  sinZO ( l - - s )  2 
" . 

( l - - s )  ~ I -- sinZ0 ( l - - s )  2 + cos 0 

Superreflection is possible for s > i, sin0 < (s - I) -l Total reflection (Req2 = 0) occurs 
for s > 2 in the region sin0 > (s - 1) -I , and for s < 0 in the region sin% < -(i + Isl) -l 
In the remaining cases we have normal reflection. 

Of particular interest are resonances (IRI = ~), possible only for s > i. One of them 
is determined by the condition s = 2(m = kU/2), and corresponds to Cherenkov radiation of 
IGW vortex sheets. The irradiation angle is determined in this case by the relation sin % = 
m/N = kU/2N. Two other resonances are determined by the condition ctg ~ = s - i, corresponding 
to the dispersion equation ~2 + (m - kU) a = N 2 for intrinsic waves on the TD. These modes 
are stable for Ik{ < /2 N/U, and transform to Kelvin-Helmholtz modes for N + 0. 

2.5. Rossby Waves on a Tangential Discontinuity. The presence of a hydrodynamic flow 
with sufficiently high velocity, capable of "overtaking" waves incident on it, does not guaran- 
tee the possibility of superreflection. For illustration we consider incidence of Rossby 
waves on a TD at the ~-plane [23]. 

The linearized equations of motion of an incompressible fluid at a plane rotating with 
angular velocity f/2 are 

h s  OP----O, ~ + / u +  3p = 0  Ou # V = O  (23)  

where 6 = df/dy = const characterizes the gradient of the Coriolis force. Introducing the 
current function #(u = ~/Sy, v = -8~/8x), one easily obtains a dispersion equation and the 
group velocity for Rossby waves (retaining the original notations): 

_ } k  2~ ~ (k 2 - q ~ , 2 k q )  = } ( - - c o s 2 0 ,  s fn20) .  (24)  k~ + q ~  = -  & s i n ~  vg~= (k ~+q=)~  ~ 

The boundary conditions at the TD-continuity are for displacement ~ = k~/(m - kU) and 
for pressure p + ~dP0/dy = iq(m - kU)~/k. The latter expression is easily obtained by 
accounting for the geostrophy condition dP0/dy = -fU for the pressure P0 in an unperturbed 
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Fig. 5. Regimes of Rossby wave reflection 
from a tangential discontinuity. Regions 
of incidence angles for the wave vector (a) 
and the group velocity (b): O) propagation 
impossible, i) normal reflection, 2) total 
reflection. 

flow, and by expressing the pressure amplitude in the form p = -f~ + (w/k - U)8~/Sy. Match- 

ing then the solutions ~l = exp(iqly) + Rexp(-iqly) and ~2 = Texp(iq2y) (where ql = 
/-k 2 - Bk/~, q2 = /-k2 - ~k/(~ - kU)), we obtain 

R= q t~176  T = 2 q l o ( ( o - - h U )  
qt~Z + qz(~__~U) ~ , q , ~  + q 2 6 o _ k U )  2 �9 ( 2 5 )  

T h e  r a d i a t i o n  c o n d i t i o n  i n  a m o v i n g  m e d i u m  w i t h  y + = v g r  y = 2 B k q 2 ( k  2 + q2 

the relation q2/ql > 0. Thus, superreflection of Rossby waves from TD is impossible. This 
is explained by the fact that the energy density of the transmitted wave in a moving medium 
is 

~ (k 2 + q~)~ 
= - -  - (k, q )bF + > 0 o - - k U  ~ - - k U  -w = . ( 2 6 )  

In Fig. 5 we show the various reflection regimes for B > O, depending on the parameter s~ = 
[i + (k 2 + q12)UB~_] -l The regions of normal and total reflection are separated by the 
angle 0 = arcsin/s B. 

The condition IRI = = provides the dispersion equation for the intrinsic waves at the 
TD in a rotating medium: 

(~ - -  kU) 2 ~' k2+~k/ (~ - -  hU) + ~z~ ~2L~k/~ = O, (27 ) 

For  t h e  d i m e n s i o n l e s s  phase v e l o c i t y  c = 2m/kU - 1 one e a s i l y  o b t a i n s  f r o m  Eq. ( 27 )  t h e  
c u b i c  e q u a t i o n  sc 3 + 3c 2 + sc - 1 = 0 (whe re  s = 2 k 2 / U / ~ ) ,  whose d i s c r i m i n a n t  i s  5 = - 4 s  ~ + 
36s 2 - 108 < 0,  and,  c o n s e q u e n t l y ,  i t  has two c o m p l e x - c o n j u g a t e  r o o t s .  Thus,  TD i n s t a b i l i t y  
i s  a l s o  r e t a i n e d  i n  t h e  p r e s e n c e  o f  r o t a t i o n ,  and f o r  s + 0 i t  t r a n s f o r m s  t o  a K e l v i n - - H e t m h o l t z  
i n s t a b i l i t y .  

2)-i > 0 determines 

3. VORTEX OSCILLATIONS 

3.1. Algebraic Method for Cylindrical Vortices. The wave properties considered above 
in shear flows have close analogy in flows with closed current lines, cylindrical vortices�9 
To study smallperturbations in axially symmetric flows an algebraic method is developed, 
based, as in plane-parallel flows, on approximating the velocity distribution by a profile 
with piecewise constant vorticity and matching of analytic solutions at region boundaries 
[24]. 

In polar coordinates (r, ~) the velocity of stationary flow in a cylindrical vortex 

equals V = (0, r~), while the pressure is P o = I p r Q ~ d r .  The linearized Navier-Stokes equations 
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for the perturbation amplitudes exp(-i~t + inqO) of velocity v = (v, u) and pressure p in a 
homogeneous fluid (~ = const) are 

- -  i ( ~ , - - , ~ . o . ) v -  m u +  _1 __dP = ~ ( + ' ~  + 1 d~' n'r~+ 1 v - -  >~"1 
p d r  ~dr  ~ r d r  r a . ' 

- - i ( o ~ - - n Q ) u q - 2 . Q v + r v  d 2  trip =~ (d~u  ! du n ~ ~- 1 u §  ( 2 8 )  
~-r + pr \ d r  2 ~ r dr r ~ 

p_~ dv  v i nu  
+ 

I n  an i n c o m p r e s s i b l e  f l u i d  one  can  i n t r o d u c e  t h e  c u r e n t  f u n c t i o n  +, i n  whose  t e r m s  a r e  e x -  
p r e s s e d  t h e  v e l o c i t y  c o m p o n e n t s  and t h e  p r e s s u r e :  u = d ~ / d r ,  v = - i n ~ / r ,  p = o [ r ( + / n  - a ) .  
d , / d r  + ~ ] ,  whe re  a -= 2a + r d a / d r  i s  t h e  v o r t i c i t y  o f  t h e  u n p e r t u r b e d  f l o w .  For  t h e  c u r r e n t  
f~nction we have the analog of the Orr-Sommerfeld equation [4] 

^ n d a / d r  i 'm A 
Z~ 4- qJ = - -  L~', ~ , ( 2 9 )  

r (+ -- n~2) ~o-- n_o 

whe re  L -= d 2 / d r  e + r - ~ d / d r  - n Z / r  2. F o r  v = 0 Eq. ( 2 9 )  i s  s i m i l a r  t o  t h e  R a y l e i g h  e q u a t i o n ,  
and c o n t a i n s  t h e  s i n g u l a r  p o i n t s  ~ - n~ = 0 w i t h  a c o e f f i c i e n t  p r o p o r t i o n a l  t o  t h e  d e r i v a -  
t i v e  o f  t h e  v o r t i c i t y  d ~ / d r  = r d ~ / d r  ~ + 3 d ~ / d r .  I n  t h e  R a y l e i g h  e q u a t i o n  t h e  r e s i d u e  o f  
t h e  c o e f f i c i e n t  a t  t h e  s i n g u l a r  p o i n t  had  t h e  same m e a n i n g ,  and was p r o p o r t i o n a l  t o  t h e  
second derivative of the velocity profile. 

For ideal fluid flows with constant vorticity, in which Q = ~0 + </r=, one can find a 
solution of (29) in the form ~ = ~a - Arn + Br-n" The algebraic method uses angular velocity 
profiles, consisting of several parts with homogeneous vorticity, bounded by tangential dis- 
continuities or velocity nodes. For this "piecewise" profile it is easy to find a solution 
matching expressions of the type ~a in each of the parts by means of boundary conditions at 
the discontinuities r = a: 

= = = o .  
P +  ~ r J ~ - a - o  ' t~J ' = ~ - ~  - - i ( + - - - r i g )  j ,  ,~-o 

Staying within the algebraic method, one can also estimate by a model the effect of 
viscosity on vortex oscillations. For this it is sufficient to consider a discontinuity be- 
tween a viscous and an ideal fluid, i.e., take into account the viscosity, for example, only 
in the vortex core. 

Account of viscosity with d~/dr = 0 does not change the solutions ~a, since the latter 
satisfy Eq. (29) identically. Enhancement of the order of the equation with v = 0 leads to 
the appearance of additional linearly independent solutions, which for large Reynolds num- 
bers Re oscillate quickly and decay. Restricting ourselves to leading order terms only in 
Re, we obtain from (28), (29) 

- - i ( ~ - - n ~ ) ~ = V d r - - ~ ,  " , p = p a ~ ,  ( 3 1 )  

The solution, quickly decaying for r < a, is of the form ~ = Gexp [qv(r - a)], where qv = 

Ji(w - nfi)/v, Reqv >.0. The boundary conditions at the TD are the continuity of the dis- 
placement r = iv/(m'- ha) and continuity of the normal components of the flow moment~n to 
the moving boundary, which can be expressed in terms of the values of the stress tensor oik 
and its derivatives "at the boundary r = a, 

-1- ~ O~rr cs(O) Ok [ 
~rr 

Or a c)~ [ 
dv d 2  ] 

(32) 

- -  +----~+ --'- P~ + - - - l -  r -I- , 

where  o i k  ( ~  i s  t h e  u n p e r t u r b e d  s t r e s s  t e n s o r .  These  c o n d i t i o n s  make i t  p o s s i b l e  t o  m a t c h  
n o n v i s c o u s  s o l u t i o n s  i n  t h e  e x t e r n a l  v o r t e x  r e g i o n  and a l i n e a r  c o m b i n a t i o n  o f  n o n v i s c o u s  
gnd damped v i s c o u s  s o l u t i o n s  i n  t h e  v o r t e x  c o r e ,  
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Fig. 6. Angular velocity profiles and vorticities 
for various cylindrical vortices. 

3.2. Vortex Stability. For vortices in an incompressible fluid one can prove a state- 
ment similar to the Rayleigh theorem [25]: Perturbations increasing with time can exist 
only in the presence of vorticity extremum points in the angular velocity profile, where 
d~/dr = 0 (in plane-parallel flow this is an inflection point of the velocity profile). 
Examples of such vortices with nonmonotonically varying vorticity are illustrated in Fig. 6 
(profiles b, c, d). In particular, for a cylindrical TD (Fig. 6c) one can find an eigen- 
function in the form 

JA(r/a)l"l  ~ r ~ a  
= [ B ( r / a ) - I " l ,  r > a  ( 3 3 )  

Matching solutions at the TD by means of the boundary conditions (30), we obtain the disper- 
sion equation m= + (w - nil0) = = [nJO02, which transforms to the Kelvin-Helmholz equation for 

i 
n ~ ~ (in this case n~0 + kU). Its solution ~ = ~0(n +- (2In I - n 2) corresponds to unstable 

modes for all JnJ -> 2. The mode n = I, corresponding to a vortex shift, is, as whole, ob- 
viously, neutrally stable. 

For Kelvin vortices (Fig. 6a) one easily derives the dispersion equation (~ - ng0)[w - 
(n - i)~ 0 ] -- 0, describing neutrally stable oscillations. This equation can be generalized, 
taking into account viscosity in the vortex core. Using the algebraic method described 
above, one can obtain in first approximation in the parameter Re = v/~0a = [24] 

2i'~ 
c o =  (n--1).O.o - -~;., tT.(n--1) , ( 3 4 )  

which corresponds to damped oscillations. 

We interpret this result, taking into account, however, that in a medium rotating faster 
than the angular phase velocity of azimuthal waves (w - nO 0 < 0) the dissipation is negative. 
The vortex oscillation energy 

p Re 2~.r = 
2 

0 

g o lul ~ + [vi ~" . 

= ' - . o  j i~'l'+lvi22 rdr  -4- =O 2 r d r - F  r.p Re r ~ O o u * d r - - ~ p R e  Ooa=u* dr  

0 a a a 

(35) 

must also be negative. Indeed, substituting solutions for amplitudes of type (33), one 
easily obtains (see [26]) 

E = -~a,e~ ~ - I pi~0/al2 ' (36) 

where ~0 is the displacement amplitude of the vortex core boundary. 

The negative energy of the vortex eigenoscillations renders its radiational instability 
in a compressible medium possible [27]. For M ~ ga/c << i the oscillations are near those 
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in the incompressible case for r ~ a, but the corresponding nonstationary motions emit sound 
into the wave zone r -> X. As a result of energy selection by the emerging sound waves, the 
oscillation amplitude increases. 

3.3. Sound Amplification by Vortices. The presence of negative energy waves in a 
rotating medium makes it possible, in principle, to amplify sound waves incident on a vortex. 
To realize this possibility, however, a sink of negative energy is needed, whose role in a 
plane-parallel TD is played by departure of transmitted waves at infinity. For vortices, 
for which the core region is, obviously, finite, this possibility does not exist. Here, 
however, is possible amplification of scattered sound due to the change of sign of viscous 
dissipation in the vortex core.* 

Consider scattering of sound by a vortex of size a << % = 2~c/w [24, 28]. The field in 
the far zone 

(37) 

Z.e:~: ~r n= + R.  exp i . . . .  
X . exp --i ~ 2 2 i 

. j 

i s  d e t e r m i n e d  by t he  r e f l e c t i o n  c o e f f i c i e n t s  o f  c y l i n d r i c a l  ha rmonics  rn  = 1 + ( 2 ~ i w / c ) ~ / 2 f n ,  

where j(O)-----Y2,[~exp (in 0) i s  t he  s c a t t e r i n g  a m p l i t u d e .  The e n e r g y  exchange  between the  wave 
r ;  

and the vortex is determined by the quantities IRnI, which can be found in first approxima- 
tion in the parameter p ---a/% << i. For this it is sufficient to match the solution at r << 
%, obtained by the algebraic method, and the solution at r >> a in the form of a stun of inci- 
dent and reflected cylindrical waves. For a Kelvin vortex with a viscous core one easily ob- 
tains by this method [24, 28] 

8.~'/a z ( ~a] 21"l o~--r~ 

1 -- IR=lz= ( In l -1 )  ! (In[ - 2 ) !  k,~"c ] [o - - (n- - l )o ]2  (38) 

For w - n a  < 0 sound i s  a m p l i f i e d :  IRnl > 1. Sound a m p l i f i c a t i o n  by a r o t a t i n g  v i s c o u s  
vortex is the acoustic analog of the effect considered in [29], where the possibility was 
shown of amplifying electromagnetic waves during scattering by a rotating conducting cylinder, 
as well as of gravity waves by a collapsing rotating body. 

It must be noted, however, that the mechanism of viscous sound dissipation in vortex 
flow does not reduce to simple absorption, but is determined by a linear transformation in 
quickly damped vortex waves. 

In conclusion we note that, being restricted in the present study to TD type modes, 
we have excluded from consideration a wide range of problems related to the resonance mechan- 
ism of amplified waves, interacting with particles in critical layers (see, for example, [4, 
6]). It is aiso interesting to initiate studies in instability mechanisms [8, 30] and non- 
linear TD dynamics [31], where negative energy waves play an essential role. 

The author is grateful to A. B. Ezerskii, Yu. A. Stepanyants, and M. D. Tokman for ad- 
vice and critical comments. 
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EFFECTIVE SATURATION OF ABSORPTION IN A MAGNETOSPHERIC PLASMA 

MASER 

P. A. Bespalov UDC 533.9.523.4 

The properties of the quasilinear interaction of whistler and Alfven waves 
with planetary radiation belts are discussed. It is shown that quasilinear 
relaxation can lead to an increase in the increment of cyclotron instability 
at the leading front of an electromagnetic pulse. This corresponds to the 
effective saturation of absorption and makes it energetically advantageous 
for the noise emission to be divided into separate electromagnetic pulses. 
Peculiarities of the manifestation of fast and slow, compared with the pulse 
length, effective saturation of absorption are discussed. 

Lesearch in recent years has shown that the regions of the radiation belts of the earth 
and Jupiter, if cyclotron instability develops in them, are largely similar in their physical 
properties to laboratory masers and lasers. In a magnetospheric plasma maser (MPM) the rela- 
tively dense magnetized plasma and the conjugate ends of a magnetic trap form a quasioptical 
resonator for electromagnetic waves. This circumstance clarifies the sense in which the term 
maser is used in the present case. Here a microwave nature is not understood literally but 
as smallness of the wavelength compared with the scale of the resonator. In turn, the active 
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